Erratic server behavior detection using machine learning on basic monitoring metrics
M. Adam*, L. Magnoni and D. Adamová
Pre-published on:
March 09, 2021
Published on:
April 15, 2021
Abstract
With the explosion of the number of distributed applications, a new dynamic server environment emerged grouping servers into clusters, utilization of which depends on the current demand for the application. To provide reliable and smooth services it is crucial to detect and fix possible erratic behavior of individual servers in these clusters. Use of standard techniques for this purpose requires manual work and delivers sub-optimal results. Using only application agnostic monitoring metrics our machine learning based method analyzes the recent performance of the inspected server as well as the state of the rest of the cluster, thus checking not only the behavior of the single server, but the load on the whole distributed application as well. We have implemented our method in a Spark job running in the CERN MONIT infrastructure. In this contribution we present results of testing multiple machine learning algorithms and pre-processing techniques to identify the servers erratic behavior. We also discuss the challenges of deploying our new method into production.
DOI: https://doi.org/10.22323/1.390.0899
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.