PoS - Proceedings of Science
Volume 390 - 40th International Conference on High Energy physics (ICHEP2020) - Parallel: Computing and Data Handling
MARTY: a C++ symbolic computation library for High Energy Physics
G. Uhlrich,* F. Mahmoudi, A. Arbey
*corresponding author
Full text: Not available
Studies Beyond the Standard Model (BSM) will become more and more important in the near future with a rapidly increasing amount of data from different experiments around the world. The full study of BSM models is in general an extremely time-consuming task involving long and difficult calculations. It is in practice not possible to do exhaustive predictions in these models by hand, in particular if one wants to perform a statistical comparison with data and the SM.

Here we present MARTY (Modern ARtificial Theoretical phYsicist), a new C++ framework that fully automates calculations from the Lagrangian to physical quantities such as amplitudes or cross-sections. This framework can fully simplify, automatically and symbolically, physical quantities in a very large variety of models. MARTY can also compute Wilson coefficients in effective theories. This will considerably facilitate the study of BSM models in flavor physics.

Contrary to the existing public codes in this field MARTY aims to give a unique, free, open-source, powerful and user-friendly tool for high-energy physicists studying predictive BSM models, in effective or full theories up to the 1-loop level, which does not rely on any external package. With a few lines of code one can gather final expressions that may be evaluated numerically for statistical analysis. Features like automatic generation and manual edition of Feynman diagrams, exhaustive and comprehensive manual and documentation, clear and easy to handle user interface are amongst notable features of MARTY.
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.