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One of the major objectives of the experimental programs at the LHC is the discovery of new
physics. This requires the identification of rare signals in immense backgrounds. Using machine
learning algorithms greatly enhances our ability to achieve this objective. With the progress of
quantum technologies, quantum machine learning could become a powerful tool for data analysis
in high energy physics. In this study, using IBM gate-model quantum computing systems, we
employ the quantum variational classifier method and the quantum kernel estimator method in
two recent LHC flagship physics analyses: tt̄H (Higgs boson production in association with a top
quark pair) and H→ µ+µ− (Higgs boson decays to two muons). We have obtained early results
with 10 qubits on the IBM quantum simulator and the IBM quantum hardware. On the quantum
simulator, the quantum machine learning methods perform similarly to classical algorithms such
as SVM (support vector machine) and BDT (boosted decision tree), which are often employed in
LHC physics analyses. On the quantum hardware, the quantum machine learning methods have
shown promising discrimination power, comparable to that on the quantum simulator. This study
demonstrates that quantum machine learning has the ability to differentiate between signal and
background in realistic physics datasets.
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1. Introduction

The discovery of new physics at the Large Hadron Collider (LHC) requires the identification
of rare signals against immense backgrounds. Using machine learning greatly enhances our ability
to achieve this objective. The intersection between machine learning and quantum computing has
been referred to as quantum machine learning, and can possibly offer a valuable alternative to
classical machine learning by providing more efficient solutions. In 2018, a quantum variational
classifier method and a quantum kernel estimator method were implemented with a quantum circuit
of 2 qubits on a superconducting processor and successfully tested on synthetic datasets [1].

In this study, we employ the quantum variational classifier method and the quantum kernel es-
timator method in a tt̄H (H→ 2 photons) physics analysis and a H→ µ+µ− physics analysis, two
recent flagship physics analyses at the LHC, using IBM gate-model quantum computers. Our goal
is to explore and to demonstrate, as a proof of principle, that the potential of quantum computers
can be a new computational paradigm for big data analysis in high energy physics.

2. Two recent LHC flagship physics analyses:

The observation of tt̄H (Higgs boson production in association with a top quark pair) by the
ATLAS and CMS experiments [2, 3] directly constituted the interaction between the Higgs boson
and the top quark, the heaviest known fundamental particle. Furthermore, the H→ µ+µ− (Higgs
boson decays to two muons) results of the ATLAS and CMS experiments [4, 5] indicated for the
first time that the Higgs boson interacts with second-generation elementary particles.

Here we construct event classifiers for the two analyses. For tt̄H production, we focus on a
channel where the Higgs boson decays into two photons and the two top quarks decay into hadrons.
For H → µ+µ− decay, we focus on a channel where the Higgs boson is produced by the vector
boson fusion (VBF) mode. In each analysis, the signal and background processes are generated
using Madgraph5_aMC@NLO [6] + Pythia6 [7], and simulated using Delphes [8]. Kinematic
variables (such as transverse momentum of final state particles) are compressed to 10 training
variables, using a Principal Component Analysis (PCA) method.

3. Quantum variational classifier algorithm

Following [1], we use the quantum variational classifier algorithm to classify physics events
of interest from background events. It can be summarized in four main steps:

1. Apply a feature map circuit UΦ(~x) to encode the input data~x into a quantum state |Φ(~x)〉.

2. Apply a quantum variational circuit W (~θ) parameterized by gate angles ~θ .

3. Measure the qubit state in the computational basis.

4. Classify the state (as "signal" or "background") through the action of a diagonal operator f
in computational basis.

During the training phase, a set of input data ~x and corresponding outputs y are used to train
the circuit W(~θ ) to reproduce the correct classification. The set of optimized parameters ~θ is then
kept fixed for all future classifications of the physical data.
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4. Quantum variational classifier result from IBM Quantum Computer Simulator

We employ quantum variational classifier with 10 qubits on the ibmq QasmSimulator for the
tt̄H analysis and the H → µ+µ− analysis. The ibmq QasmSimulator simulates executions and
measurements on quantum circuits. The simulation incorporates a noise model generated from the
properties of real hardware device. In each analysis, we apply the quantum variational classifier
algorithm to ten independent datasets, each consisting of 100 events for training and 100 events
for testing. The quantum circuits are optimized to best fit the constraints imposed by the hardware
(e.g., qubit connectivity, gate set availability, and hardware noise), as well as the nature of the
data. With the same ten datasets and the same 10 PCA variables, we also train a classical SVM
classifier using the scikit-learn package [9] and a BDT classifier using the XGBoost package [10].
The classical SVM and the BDT serve as benchmarks for classical machine learning algorithms.

To study the discrimination power of each algorithm for both tt̄H and H→ µ+µ− , the testing
events of the ten datasets are used to make Receiver Operating Characteristic (ROC) curves in the
plane of background rejection versus signal efficiency, as shown in Figure 1. We observe that in
both the tt̄H analysis and the H→ µ+µ− analysis, the quantum variational classifier method on the
ibmq QasmSimulator (blue) performs similarly to the classical SVM (yellow) and the BDT (green).
We quantify the discrimination power of each classifier by the AUC (area under the ROC curve).
In the tt̄H analysis, the AUC for the quantum variational classifier method reaches 0.81, compared
to 0.83 for the classical SVM and 0.83 for the BDT. Similarly, in the H → µ+µ− analysis, the
AUC for the quantum variational classifier method reaches 0.83, compared to 0.82 for the classical
SVM and 0.80 for the BDT. This demonstrates the quantum algorithm can accurately distinguish
signal from background on realistic physics datasets.

(a) (b)

Figure 1: The Receiver Operating Characteristic (ROC) curves (in the plane of background rejection ver-
sus signal efficiency) of the quantum variational classifier method on the ibmq QasmSimulator (blue), the
classical SVM (yellow), and the BDT (green) for (a) the tt̄H analysis and (b) the H→ µ+µ− analysis.

5. Quantum variational classifier result from IBM Quantum Computer Hardware

For the tt̄H analysis and the H → µ+µ− analysis, we employ the quantum variational clas-
sifier algorithm with 10 qubits on the “ibmq_boeblingen” and “ibmq_paris” quantum computer
hardware. “ibmq_boeblingen” is a 20-qubit quantum processor and “ibmq_paris” is a 27-qubit
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quantum processor. Both are based on superconducting electronic circuits. Due to current limita-
tion of the available resources, the quantum variational classifier algorithm is only applied to one
of the ten datasets for each physics analysis. The circuit configuration on the hardware is kept the
same as for the simulator jobs.

The ROC curves of the quantum variational classifier method on the ‘ibmq_boeblingen” quan-
tum hardware (for tt̄H ) and “ibmq_paris” quantum hardware (for H→ µ+µ− ) are shown in red in
Figure 3. The ROC curves for the ibmq QasmSimulator with the same datasets are overlaid in blue.
We observe that for the quantum variational classifier method, the quantum simulator and quantum
hardware results appear to be in good agreement. In the tt̄H analysis, the quantum hardware AUC
is 0.82, while the quantum simulator AUC is 0.83. Similarly, in the H→ µ+µ− analysis, the quan-
tum hardware AUC is 0.81, while the quantum simulator AUC is 0.83. The gate-model quantum
computers have achieved reasonable performance to distinguish signal from background.

(a) (b)

Figure 2: The Receiver Operating Characteristic (ROC) curves of the quantum variational classifier method
with the quantum computer hardware (red) and with the ibmq QasmSimulator (blue) for (a) the tt̄H analysis
(using “ibmq_boeblingen”) and (b) the H→ µ+µ− analysis (using “ibmq_paris”).

6. Quantum Kernel Estimator Algorithm

The quantum kernel estimator algorithm [1] maps classical data ~x non-linearly to a quantum
state |Φ(~x)〉, and calculates the kernel entry for data~x and~z, as |〈Φ(~x)|Φ(~z)〉|2 = |〈0n|U †

Φ(~x)|UΦ(~z)|0n〉|2.
The quantum feature map UΦ(~x) encodes classical data in its parameters. In the training phase, the
kernel entries are evaluated for all pairs of the training sample, and used to find a separating hyper-
plane with a classical SVM. In the classification phase, the kernel entries are evaluated for new data
~x′ and data from the training sample, and used to classify data~x′ with the separating hyper-plane.

7. Quantum kernel estimator result from IBM Quantum Computer Simulator

For the tt̄H analysis, we employ the quantum kernel estimator method using 10 qubits on
the ibmq Statevector Simulator. The ibmq Statevector Simulator emulates the executions of a
quantum circuit and evaluates the resulting quantum state vector. It does not incorporate noises of
the hardware device. The quantum kernel estimator method enables us to work with a larger number
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of events. With the same datasets and the same training variables, we construct a classical SVM
classifier using the scikit-learn package [9] and a BDT classifier using the XGBoost package [10].

In Figure 3, we show the area under the ROC curve (AUC) for each algorithm versus different
dataset sizes, for the tt̄H analysis. All results are averaged over 30 runs. We find that, the quantum
kernel estimator method and the classical methods exhibit comparable performances.

Figure 3: Area under the ROC curve (AUC) versus different dataset sizes for the quantum kernel estimator
method (blue), the classical SVM (yellow) and the BDT (green), for the tt̄H analysis.

8. Quantum kernel estimator result from IBM Quantum Computer Hardware:

We employ the quantum kernel estimator method using 10 qubits on the “ibmq_paris” quan-
tum computer hardware for the tt̄H analysis. Due to current limitation of access time on “ibmq_paris”,
we process only one dataset consisting of 100 training events and 100 test events. The quantum
circuits and SVM hyperparameters of the hardware run are kept the same as for the simulator runs.
We observe that, for the quantum kernel method, the quantum computer simulator and quantum
computer hardware results are in good agreement. In the tt̄H analysis, the AUC from the quantum
computer hardware reaches 0.85, compared to 0.84 from the quantum computer simulator.

9. Summary

In this study, we have obtained early results in the application of quantum machine learn-
ing (the quantum variational classifier method and the quantum kernel estimator method) with 10
qubits on the ibmq QasmSimulator and the “ibmq_boeblingen” and “ibmq_paris” quantum hard-
ware to two recent LHC flagship physics analyses: tt̄H and H → µ+µ− . The quantum machine
learning methods on the ibmq QasmSimulator perform similarly to the classical SVM algorithm
and the BDT algorithm. The quantum machine learning methods on the quantum hardware have
shown promising discrimination power comparable to that on the quantum simulation. These re-
sults demonstrate that quantum machine learning on the hardware of the gate-model quantum com-
puters has the ability to differentiate between signal and background in a realistic high energy
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physics analysis at the LHC. Furthermore, with the rapid advance of the quantum computing tech-
nology, the use of quantum machine learning may offer a “speed up” advantage, which can be
critical for the future of the high energy physics community.
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