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The analysis of data produced in proton-proton collisions at the Large Hadron Collider (LHC)
is very challenging and it will require a huge amount of resources when High Luminosity LHC
will be operational. Recently, Machine Learning methods have been employed to tackle this
task, with high efficiency but low interpretability. In this study [1] a possible application of a
quantum-inspired algorithm based on tree tensor networks to study simulated data at LHCb is
shown, in order to properly classify 11̄ di-jet events and to interpret the classification result.
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1. Introduction

At the Large Hadron Collider (LHC) protons collide at a center-of-mass energy of 13 TeV,
producing a variety of particles. In particular, quarks produced after the collision cannot exist
as free particles, and they manifest themselves as bound states (hadrons) or as narrow streams
of particles produced by hadronization (jets). At LHCb [2], a forward spectrometer designed to
study the forward region of proton-proton collisions, it is interesting to study jets coming from
heavy-flavor quarks (namely 1 and 2 quarks), and therefore it is necessary to perform a good
separation between different flavors. The technique used to achieve such a task is called jet flavor
tagging. In this study [1], the identification of jets produced by 1- and 1̄-quarks is taken into
consideration, since it is fundamental to measure the 11̄ charge asymmetry [3], which could be
sensitive to New Physics processes [4]. At LHCb, 1-jets are tagged using several methods, one of
these relies on a single-particle tagging algorithm called muon tagging: the charge of the muon
with highest transverse momentum ?) inside the jet is used to tag the 1-quark, since the muon
charge is completely correlated with the 1-quark charge. In our study we would like to show that
a quantum-inspired method based on tensor networks can classify 1- and 1̄-jets. We also compare
its performances with the standard LHCb tagging method and state-of-the-art deep neural network.

2. Tree Tensor Network

Tensor Networks (TNs) are a mathematical tool developed to investigate quantum many-body
systems on classical computers [5]. They rely on an efficient representation of a quantummany-body
wavefunction |k〉 in a compact form, by approximating a high-order tensor by a set of low-order
tensors that are contracted in a particular underlying geometry: here we consider a Tree Tensor
Network (TTN). The accuracy of the approximation is controlled by an auxiliary parameter called
bond-dimension j, controlling the amount of information captured within the ansatz. Recently it
has been proved that TNs can be applied to solve supervised Machine Learning (ML) problems
[6]. Exploiting their original development for simulating quantum systems, TNs allow computing
typical quantities such as correlations and entanglement entropy, giving more insights into the
learning process.

3. Methodology

Monte Carlo samples from LHCb Open Data [7] are considered for proton-proton collisions
at center-of-mass energy of 13 TeV, producing 11̄ di-jet events. Some kinematic cuts are consid-
ered to select proper events: jets are required to have transverse momentum ?) > 20 GeV and
pseudorapidity [ in the range 2.2 < [ < 4.2. A dataset of about 700: jets is then split into two
datasets: 60% of the jets are used in the training process while the remaining are used as a test
set. Inside each jet several types of particles are selected: `±, 4±, c±,  ± and ?/?̄ and for each
type the particle with the highest ?) is selected; particle types are selected by exploiting LHCb
excellent performances in Particle IDentification (PID). Finally, for each of the selected particles
three variables are selected: the charge @, the transverse momentum relative to the jet axis ?A4;

)
and

the distance between the particle and the jet axis in the ([, q) space Δ' (where q is the azimuth

2



P
o

S
(

I
C

H
E

P
2

0
2

0
)

9
3

1
Towards quantum-inspired Machine Learning on high-energy physics data at LHCb Davide Zuliani

angle and Δ' =
√
(Δ[)2 + (Δq)2). Finally, the jet charge &, defined as the sum of the particle

charges weighted for ?A4;
)

, for a total of 16 variables. These variables are used as inputs for two
inclusive ML classifiers, a Deep Neural Network (DNN) and a TTN, therefore exploiting the jet
substructure. For each event prediction, both classifiers give as output a probability P1 for a jet to
be generated by a 1- or 1̄-quark. The classification probability P1 is interpreted in the following
way: for values P1 > 0.5 (P1 < 0.5) a jet is classified to be produced by a 1-quark (1̄-quark), with
an increasing confidence going to P1 = 1 (P1 = 0). The figure of merit for this kind of study is the
tagging power YC06, defined as

YC06 = Y4 5 5 (20 − 1)2 (1)

where Y4 5 5 is the efficiency (fraction of tagged jets) and 0 is the accuracy (fraction of corrected
tagged jets). The tagging power represents the effective fraction of jets contributing to the statistical
uncertainty in the 11̄ charge asymmetry measurement. A threshold on the high uncertainty region
of P1 is applied in order to maximize the tagging power for each considered algorithm. Finally
performance from both ML algorithms are compared with the standard muon tagging approach
used so far at LHCb.

4. Results

The tagging power YC06 as a function of the jet ?) for the two classifiers and the muon tagging
approach is shown in Fig.1: both ML algorithms outperform the standard muon tagging approach
by a factor ∼ 10 and they perform similarly, showing better performances for lower ?) . The
scatter plot of TTN and DNN output is also presented, highlighting a correlation between the two
classifiers.

Figure 1: Comparison of the DNN and TNN analysis: (left) tagging power for the DNN (green), TTN
(blue) and the muon tagging (red), (right) scatter plot of DNN and TTN predictions with 1(1̄)-quarks in blue
(red). Images taken from [1].

Further insights are obtained by looking at the probability distributions for the two classifiers.
In Fig.2 the probability distributions are presented and it is evident that, despite both classifiers
have the same performances, the probability distributions are different: for the DNN (left) we see
a Gaussian-like shape which gives less correct predictions with high confidences and fewer wrong
predictions with high confidences; for the TTN (right) we have a flat distribution including more
predictions, correct and incorrect, with higher confidence. An interesting feature for the TTN is the
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presence of peaks at P1 = 0, 1 which are coming from jets containing a muon, since the presence
of a muon inside the jet is a well-defined predictor for a jet generated by a 1-quark. The DNN lacks
this confident predictions.

Figure 2: Probability distribution for the DNN (left) and the TTN (right). The correctly classified events
(green) are shown in the total distribution (light blue). Below, in black all samples where a muon was detected
in the jet. Images taken from [1].

The TTN framework enables us to capture correlations and entanglement within the classifier,
in this way it is possible to identify the most important features typically used by the classifier
in the classification process. Measuring correlations between features allow us to understand the
relations between features: if two features are highly correlated or anti-correlated the information
of one of the features can be neglected and gained back by using the other feature; on the contrary,
if there is no correlation between features it means that both features may provide fundamentally
different information for the classification. In Fig.3 correlations for the 16 variables in the 1-quark
classification are shown. The correlations analysis is not sufficient to claim that the information
coming from those variables is important for the classification, along with the relative information
of the feature we need to know the actual magnitude, it is, therefore, necessary to measure the
entanglement entropy ( of each feature, as shown in Fig.3. In the ML context, the entanglement
entropy ( can be interpreted as the quantity of information contained in a set of features affecting
the classification. In this way it is possible to discard those non-informative features for the
classification, introducing therefore a new model with fewer features and complexity.

The Quantum Information Post-learning feature Selection (QuIPS) algorithm exploits these
considerations, allowing us to rank and therefore to reduce the number of features for the classifica-
tion; in this way, we select the best 8 features to classify the events: charge, momenta and distance
of the muon, charge, momenta, and distance of the kaon, charge of the pion, the total charge of the
jet. In Fig.4 we compare the tagging power for the model with the best 8 features (�8 model) with
the one composed of the worst 8 (,8 model), the complete model, and the muon tagging approach:
it is evident that despite halving the number of features, the results between the complete model
and �8 are still comparable, while the ,8 model is performing worse than the standard tagging
approach.

Finally, we study the possibility to reduce the prediction time, since short prediction times
are required to achieve real-time event selection: during Run 2 data-taking LHCb collected data
approximately every 1`s. To do sowe exploit an interesting feature of the TTN: by adjusting the bond
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Figure 3: (left) Correlations between the 16 input features (blue for anti-correlated, white for uncorrelated,
red for correlated). The numbers indicate @, ?A4;

)
, Δ' of the muon (1-3), kaon (4-6), pion (7-9), electron (10-

12), proton (13-15) and the jet charge & (16). (right) Entropy of each feature as measure for the information
provided for the classification. Images taken from [1].

Figure 4: TTN tagging power for learning on all features (blue, complete model), the best 8 (�8 model)
proposed by QuIPS exploiting correlations and entanglement measurements (magenta), the worst 8 (,8
model, yellow) and the muon tagging (red). Image taken from [1].

dimension j it is possible to target a specific prediction time while keeping the prediction accuracy
reasonably high. This can be done after the training procedure, therefore without relearning
a new model, as would be the case for a neural network. This is achieved via the Quantum
Information Adaptive Network Optimization, which is combined with the QuIPS algorithm to
reduce the information used by the TTN in an optimal way by balancing the prediction time and
the accuracy. In Fig.5 results are shown for the complete and the �8 model, with different bond
dimensions j: by compressing down the complete model to j = 5 the overall accuracy does not
change significantly, while improving the prediction time from 345`s to 37`s. Applying the same
idea to the �8 model we reduce the prediction time to 19`s, which is compatible with the current
real-time classification rate. This study has been performed only on one CPU processor core,
therefore there could be some improvements by performing the tensor contractions on GPUs.

5. Conclusions

In this study we analyzed the possibility to apply TTN to supervised ML problems such as
classifying 1- and 1̄-jets at LHCb. We compared the TTN performance to a DNN andwe pointed out
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Figure 5: TTN tagging power for decreasing bond dimension truncated after training: The complete model
(blue shades for j = 100, j = 50, j = 5), for using the QuIPS best 8 features only (�8 model, violet shades
for j = 16, j = 5), and the muon tagging (red). Image taken from [1].

that, despite the two classifiers use information in different ways, their performance results similar.
Both ML classifiers outperform the standard muon tagging approach by one order of magnitude.
By further analyzing the TTN framework we exploited the possibility to study relations between
features, namely by measuring correlation and entanglement entropy: in this way we proved that is
possible to select the best features and still get good performances. We also performed a truncation
of the network after the training step to reduce the classification time, obtaining performances
comparable to the current real-time classification rate. Future studies will focus on studying 1- and
2-jets separation and performing real-time applications.
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