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SModelS is an automatized tool enabling the fast interpretation of simplified model results from
the LHC within any model of new physics respecting a Z2 symmetry. In this contribution, we
report on two important updates of SModelS during 2020: the extension of the SModelS’ database
with 13 ATLAS and 10 CMS analyses, including 5 ATLAS and 1 CMS analyses at full Run 2
luminosity, and the ability to use full likelihoods now provided by ATLAS in the form of pyhf
JSON files. Moreover, we briefly explain how to use SModelS and give an overview of ongoing
developments.
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1. Introducing SModelS

Most experimental searches for new physics at the LHC interpret their data in the context
of simplified models. Such simplified models reduce a full theory to only a few new particles
with respect to the Standard Model (SM) and assume a simple decay pattern. For example, the
supersymmetry (SUSY) motivated search in the 2g + �miss

)
final state may typically be interpreted

in a simplified model that comprises a stau, g̃1, and a neutralino, j̃0
1 , as the only new particles

and that considers just stau-pair production and a 100% branching ratio for g̃1 → g j̃0
1 . There is a

plethora of ATLAS and CMS analyses from Run 1 and Run 2, looking for new physics in different
final states and/or exploiting different analysis techniques, that report their results in the context of
such simplified models.

To work out how all these experimental results constrain full models, which may have a large
particle content and (much) more complicated decay patterns, is a highly non-trivial task. It may
be addressed by reproducing the experimental analyses in Monte Carlo event simulations—this
approach, often referred to as “recasting”, is however extremely CPU time consuming. Moreover,
only a fraction of the experimental searches is implemented in public recasting tools. The alternative
is to re-use the published simplified model results – this is the purpose of SModelS [1–6]. This
approach requires to compute only cross sections times branching ratios, f × BRs, for the tested
signals. It is often more conservative but much faster than full recasting. Besides speed, the power
of SModelS comes from its large database of experimental results, which allows to check limits
from nearly 100 ATLAS and CMS searches for SUSY. Note that SModelS can conveniently be
used beyond SUSY for any Beyond the Standard Model (BSM) scenario with a Z2-like symmetry,
for which the signal acceptance of the SUSY searches apply [1].

In the following, we first present in more detail the working principle of SModelS. This is
followed by the new developments published in 2020 (SModelS versions 1.2.3 and 1.2.4), namely a
major database update [5] and the pyhf support [6] for usage of full likelihoods provided by ATLAS.
We then briefly explain how to use SModelS. We conclude with a short summary, some remarks
on the treatment of long-lived particles, and a brief discussion of ongoing developments for the
upcoming SModelS version 2.0. An overview of other approaches and recasting tools can be found
in [7] and in the review talk by B. Fuks at this workshop.

1.1 Working principle

SModelS is based on a general procedure to decompose BSM scenarios featuring a Z2-like
symmetry into simplified-model topologies—also referred to as simplified model spectra (SMS).
The decomposed topologies are then matched and constrained with experimental results in the
SModelS’ database (from currently 48 ATLAS and 47 CMS analyses). The working principle is
illustrated in Figure 1.

Starting from the BSM particle masses, decay branching ratios and production cross sections
provided in the input SLHA or LHE file, SModelS determines the weights in terms of cross
sections times branching ratios, f × BR, of all occurring BSM signals. These signal weights are
then confronted with the experimental constraints in the database of LHC results as exemplified
in Figure 2. This is easier and much faster than reproducing analyses with Monte Carlo event
simulation, and it allows for reinterpreting searches which are not just cut and count, e.g., analyses
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Figure 1: SModelS working principle.

fth

�'1

�'3

�'2

fUL

Figure 2: Matching procedure: fUL sets a limit on fth × �'1 × �'2 × �'3

which rely on BDT (boosted decision tree) variables. The downside is that the applicability is
limited by the simplified model results available in the database (mostly simple, symmetric signal
topologies). Moreover, whenever the tested signal splits up into many different channels, as it is
often the case in complex models with many new particles, the derived limits tend to be highly
conservative.

SModelS is thus particularly useful for evaluating constraints and generally characterizing
collider signatures in large scans and model surveys. As mentioned, it can be used for any BSM
scenario (beyond the minimal supersymmetric SM, MSSM, and beyond SUSY in general) with a
Z2-like symmetry, as long as the simplified model assumptions apply. This means, the kinematic
distributions – and thus the signal acceptance – of the tested signal need to be approximately the
same as for the (SUSY) scenario assumed for the simplified model in the experimental analysis;1
see [1] for a discussion of the simplified model assumptions and associated caveats as well as [8–10]
for a quantification of their impact.

1In particular, the framework does not distinguish between different productionmodes (e.g. C-channel versus B-channel)
or different spins (see, however, section 5 for upcoming developments).
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1.2 Database structure

The SModelS database makes use of two types of results: upper limit (UL) results and
efficiency map (EM) results. UL maps are 95% confidence level (CL) upper limits on f × BR
mapped on the parameter space of the given simplified model, typically the BSM masses or slices
over the BSM masses. Coming back to the example of the stau-neutralino simplified model (also
called TStauStau), the UL map would provide the 95% CL limit on f(?? → g̃1 ¯̃g1) × [BR(g̃1 →
g j̃0

1)]
2 in bins of (< j̃0

1
, < g̃1). Such UL maps allow us to directly set a limit on the corresponding

topology appearing in a full model by interpolating the UL value to the given parameter point.
However, their statistical interpretation is limited and only allows for a binary decision – excluded
or not – on a topology-per-topology basis. Only if the expected ULs are provided in addition to
the observed ones, it becomes possible to select the most sensitive result and/or to estimate an
approximate likelihood for the signal strength.

EMs are simulated acceptance times efficiency (� × n) values (simply called ‘efficiencies’
in SModelS) for the various signal regions of an analysis. Like the UL maps above, they are
provided as grids in the simplified model parameter space. The big advantage of EMs is that
they allow us to combine all contributions to a given signal region from different simplified model
topologies. Furthermore, they enable the computation of a proper likelihood, either using aGaussian
approximation for the nuisance parameters (simplified likelihood) [2, 3], or using the full statistical
model of the analysis [6] (see section 3). They thus enable a richer and more robust statistical
inference.

An EM database entry is structured as shown in Figure 3. It has sub-folders for each signal
region, here SRhigh and SRlow, which contain the actual EMs, here TStauStau.txt. Moreover,
in each signal region sub-folder, there is a dataInfo.txt file with relevant metadata, the number
of observed and expected background events and the respective signal upper limits. (We will come
back to the globalInfo.txt and .json files in section 3.)

ATLAS-SUSY-2018-04-eff

SRhigh

SRlow

dataInfo.txt

TStauStau.txt

globalInfo.txt

SRcombined.json

Figure 3: File structure of the ATLAS-SUSY-2018-04 [11] EM database entry

UL database entries are structured analogously, although they do not have specific signal region
sub-folders. The database text files are parsed and “pickled”, using principal component analysis
and Delaunay triangulation, to build a binary database file. The database folder and object structure
as well as the binary (pickle) format are explained in detail in the database structure section of
the online manual. The whole database may be parsed and pickled locally, or downloaded as a
ready-made pickle file.
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Analysis L [fb−1] ID Ref. Type
0 lept. + jets 36.1 SUSY-2016-07 [15] UL
0 lept. stop 36.1 SUSY-2016-15 [16] UL
1 lept. stop 36.1 SUSY-2016-16 [17] UL, EM
2–3 lept. 36.1 SUSY-2016-24 [18] UL, EM
photon + jets 36.1 SUSY-2016-27 [19] UL, EM
0–1 lept. + 1-jets 36.1 SUSY-2016-28 [20] UL
EW-ino, Higgs 36.1 SUSY-2017-01 [21] UL
Higgsino, Z/H 36.1 SUSY-2017-02 [22] UL
2 OS taus 139.0 SUSY-2018-04 [11] UL, EM, JSON
3 lept., EW-inos 139.0 SUSY-2018-06 [23] UL★

multi-1 139.0 SUSY-2018-31 [24] UL, EM, JSON
2 OS lept. 139.0 SUSY-2018-32 [25] UL
1 lept. + � → 11̄ 139.0 SUSY-2019-08 [26] UL, EM, JSON

Table 1: Official ATLAS 13 TeV results included in the recent database update. All analyses assume large
�miss
)

in the final state. The superscript ★ denotes UL results which contain expected limits in addition to the
observed ones. JSON denotes the availability of full likelihoods, see section 3.

2. Latest database update

In the v1.2.3 release [5], the SModelS database was updated with the results from 13 ATLAS
and 10 CMS Run 2 analyses. In total, 76 official UL and EM results have been added in v1.2.3
(with 3 more EMs added in v1.2.4). This corresponds to all relevant new ATLAS and CMS results
available on HEPData or on the analysis’ TWiki page as of end of March 2020. An overview of
these new results is given in Tables 1 and 2.

Moreover, 21 “home-grown” EMs were added for two ATLAS and CMS multi-jet + �miss
)

searches at 13 TeV. These were produced by us using MadAnalysis 5 [12, 13] to improve the
coverage of topologies with 2–5 jets shown in Figure 4; these are important for example when
gluino-squark associated production is relevant.2

Some more comments are in order. Regarding the new ATLAS analyses included in SModelS,
half of them have EMs in addition to the UL results, which as mentioned allows for the computation
of a likelihood. It is also interesting to observe that five ATLAS analyses are at full Run 2 luminosity
and three have full likelihoods available. On the CMS side, more than half of the official results
have expected ULs in addition to the observed ones. However, none of them provides EMs. One
CMS results is for full Run 2 luminosity.

Figure 5 demonstrates the physics impact of the v1.2.3 database update upon the so-called
phenomenological MSSM (pMSSM), i.e. the MSSM with 19 free parameters defined at the weak
scale. This makes use of the extensive dataset from the ATLAS pMSSM study [37] available
at [38]; concretely we use the “bino LSP” points which are not excluded by the Run 1 searches
considered in [37]. The left plot in Figure 5 compares the marginal gluino mass distributions of

2Note here that home-grown EMs were included in SModelS before, notably for stable heavy charged particles and
R-hadrons [3, 14].

5
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Analysis L [fb−1] ID Ref. Type
0 lept., top tagging 2.3 SUS-16-009 [27] UL★

≥ 2 taus 35.9 SUS-17-003 [28] UL
EW-ino combination 35.9 SUS-17-004 [29] UL
1 lept. compressed stop 35.9 SUS-17-005 [30] UL★

jets + boosted � → 11̄ 35.9 SUS-17-006 [31] UL★

2 SFOS lept. 35.9 SUS-17-009 [32] UL★

2 lept. stop 35.9 SUS-17-010 [33] UL★

photon + (1) jets 35.9 SUS-18-002 [34] UL★

0 lept. + jets, MHT 137.0 SUS-19-006 [35] UL★

Table 2: Official CMS 13 TeV results included in the recent database update. All analyses assume large
�miss
)

in the final state. The superscript ★ denotes UL results which contain expected limits in addition to the
observed ones.

Analysis L [fb−1] ID Ref. Type
0 lept. + jets 36.1 ATLAS-SUSY-2016-07 [15] EM
0 lept. + jets 35.9 CMS-SUS-16-033 [36] EM

Figure 4: Topologies (top row) and analyses (bottom row) for which home-grown EM results were included
in the recent database update.

points excluded with v1.2.3 to those excluded with v1.2.2. The plot on the right shows the number of
newly excluded points when using only the official ATLAS and CMS results in v1.2.3 (dark red) as
compared to using the full v1.2.3 database including the home-grown EMs (orange). The increase
in constraining power due to the database update is quite noticeable. In numbers, SModelS v1.2.3
excludes 10% more points than v1.2.2, 27% of which are due to the home-grown EMs. Additional
plots showing the constraining power can be found in [5].

3. Interface to pyhf

As mentioned in section 1.2, EM-type results allow for the construction of a likelihood for
the signal strength, and thus for a proper statistical evaluation, including, e.g., the computation of
an exclusion limit at a given CL. However, as long as no information on the correlation between
signal regions is available, only the most sensitive (a.k.a. “best”) signal region should be used for
this exercise. This can severely limit the precision of the limit setting, see e.g. contribution 15 of
[39]. In turn, as demonstrated in e.g. [40], being able to statistically combine disjoint signal regions
instead of using only the best one, can be essential in physics studies.

6
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Figure 5: Results for the ATLAS pMSSM points with a bino-like LSP, which were classified as not excluded
in [37], as function of the mass of the gluino. Left: In blue the number of points excluded in version 1.2.2,
in orange the number of points now excluded in v1.2.3 and in grey the total number of point per bin. Right:
the number of newly excluded points when using only the official ATLAS and CMS results in v1.2.3 (dark
red) as compared to using the full v1.2.3 database including the home-grown efficiency maps (orange).

The CMS SUSY group has been publishing signal region correlation data in the form of
covariance matrices for some of their analyses. This so-called simplified likelihood [41] approach
assumes that uncertainties can be well approximated by Gaussians. SModelS can make use of these
correlation data since its version 1.2.0 [3].

ATLAS has recently gone a significant step further by publishing full likelihoods using a JSON
serialization [42], which provides background estimates, changes under systematic variations, and
observed data counts at the same fidelity as used in the experiment. The JSON format describes the
HistFactory family of statistical models [43], which is used by the majority of ATLAS searches. The
pyhf package [44] is then used to construct statisticalmodels, and perform statistical inference, within
a python environment.3 The availability of such full likelihoods is a real boon for reinterpretation
studies. From SModelSv1.2.4 onwards, we are therefore providing an interface to pyhf, which
makes use of the ATLAS JSON files whenever available [6].

As seen in Figure 3, the JSON file describing the likelihood is placed in the folder of the
associated database entry; in the example shown, the file is called SRcombined.json. Note
that this is a background-only JSON file, i.e. it contains only background numbers with their
uncertainties as well as experimentally observed numbers. Upon running SModelS with signal
region combination turned on, it is “patched” with the BSM contributions in the various signal
regions as determined from the EMs. For this to work correctly, the name(s) of the JSON file(s)
to use, as well as the names of the relevant signal regions and their order, are specified in the
globalInfo.txt file. (Apart from this, globalInfo.txt contains relevant metadata about the
database entry, like the analysis ID, centre-of-mass energy, luminosity, etc.) In our example this is:

datasetOrder: "SRlow", "SRhigh"

jsonFiles: {"SRcombined.json": ["SRlow", "SRhigh"]}

3Note that this fulfills for the first time the Les Houches Recommendations 3b and 3c [45]!

7
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Figure 6: Validation of the TStauStau (?? → g̃+1 g̃
−
1 , g̃

±
1 → g j̃0

1) result from the ATLAS stau search [11],
on the left using the best signal region, on the right using the full likelihood.

pyhf is then used for the statistical evaluation, returning a CLB that may be varied to infer a cross
section upper limit at 95% exclusion CL.

To demonstrate the physics impact, we compare in Figure 6 the SModelS exclusion (grey
line) with the official exclusion (black line) for the ATLAS stau search [11], using the best signal
region (left) and using pyhf combination (right). As one can see, the usual procedure, which picks
up the most sensitive efficiency map result, over-excludes by about 50 GeV on half the exclusion
line. In contrast, a very good agreement with the official ATLAS result is obtained with the full
pyhf likelihood. The remaining small difference might be due to the (interpolated) acceptance
× efficiency values from the simplified model EMs not exactly matching the “true” ones of the
experimental analysis.

Even though we only show one result here, one can appreciate the gain in accuracy that one
can reach with full likelihoods. More examples can be found in [6]. The ATLAS collaboration
is at the beginning of a huge effort to provide full statistical models for new analyses. The first
analyses published already show how this can help theorists make more trustful reinterpretations.
The importance of such likelihood information for, e.g., global fits, has also been emphasised in [7].

4. Installation and usage

In this section we provide a short summary of the quick guide for getting started from the tutorial
given at this workshop. For more information, the user is kindly referred to the online manual,
where a detailed documentation is available.

SModelS is a python library that works with python version 2.6 or later, the default being
python3. It is listed in the Python Package Index (PyPI) and can thus be simply installed with pip
or pip3 by typing

pip install [--user] smodels

This will install SModelS into the default system or user directory, e.g., ∼/.local/lib/. It is
therefore recommended only for users who are at ease with working with python libraries.
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Most users may prefer to directly install the package in a local folder using the source file
provided on the SModelS releases page on github. To this end, download the source (.tar.gz or
.zip) file, extract it at the desired destination and run:

make smodels

in the top-level directory. This will install the required dependencies (using pip install) and compile
Pythia [46] and NLL-fast [47]. For the latter two, a C++ and a Fortran compiler are needed. (If the
Fortran compiler isn’t found, try make FC=<path-to-gfortran> smodels.) Details on install
options and system-specific installations are given in the installation section of the online manual.

The easiest way of using SModelS is via the runSModelS.py command-line tool. The basic
format is

./runSModelS.py -f <path-to-input-file> [-p parameters.ini]

For the full list of options, type ./runSModelS.py -h. The input file can be an SLHA or an LHE
file. If a directory is given, all files in that directory will be processed. Note that input SLHA files
need to includemasses, decay tables, and LHC production cross sections. (For adding cross sections
for MSSM particles in SLHA format, SModelS Tools provides a convenient xsecomputer based
on Pythia and NLLfast.) A couple of sample input files for testing are provided in the inputFiles
directory.

The basic options and parameters used by runSModelS.py are defined in the parameters
file. An example including all available parameters together with a short description, is stored in
parameters.ini in the top-level directory. Here also the signal region combination can be turned
on or off by setting combineSRs to True or False; as signal region combination may take a few
seconds per point, False is the default.

Two particularly important settings in the parameters file are the path to the database and the
BSM model definition. For the database, one can provide either the path to the local text database,
typically

path = ./smodels-database/

in which case the database will be parsed and pickled locally, or an URL to the database pickle file.
In the latter case, the binary pickle file will be downloaded from the server. This is often faster than
pickling locally. Here,

path = official

provides a short-hand for the official database of your current SModelS version. A list of public
database versions is given on the database release page.

The BSM model definition is done in a python file (so-called particle module) that specifies
the even and odd particle content of the model. In addition, the quantum numbers of the new
particles must be given in a qNumbers dictionary. A couple of pre-defined particle modules
are available in smodels/share/models/: mssm.py and nmssm.py for the MSSM and Next-
to-MSSM, dgmssm.py for the minimal Dirac gaugino model, and idm.py for the Inert Doublet
Model. In the parameters file, the path to the particle module is specified as, e.g.,

9

https://github.com/SModelS/smodels/releases
https://smodels.readthedocs.io/en/latest/Installation.html
http://smodels.readthedocs.io/
https://smodels.readthedocs.io/en/latest/SModelSTools.html
https://smodels.readthedocs.io/en/latest/RunningSModelS.html#parameterfile
https://smodels.readthedocs.io/en/latest/RunningSModelS.html#parameterfile
https://github.com/SModelS/smodels-database-release/releases


P
o
S
(
T
O
O
L
S
2
0
2
0
)
0
2
2

New developments in SModelS Gaël Alguero and Sabine Kraml

model=share.models.idm

If no model is given, the MSSM is taken as the default.

While writing the particle module for a new model is rather straightforward, producing ap-
propriate input SLHA files (including decay tables and cross sections) may be less so. Here the
micrOMEGAs–SModelS interface [48], controlled with the switch

#define SMODELS

from micrOMEGAs 4.3 onwards, provides a convenient way: for all implemented models, including
new ones added by the user, micrOMEGAs automatically produces the needed particle.py and
SLHA-style SModelS input files for the parameter point under consideration (decay tables and cross
sections are computed at tree level with calcHEP). SModelS is called from micrOMEGAs by the
function

smodels(Pcm, nf, csMinFb, fileName, wrt)

where Pcm is the proton beam energy in GeV and nf is the number of parton flavors used to compute
the production cross sections of the BSM particles. The result is reported in SLHA format. The
details of this functionality are described in [48] and in the manual shipped with micrOMEGAs.

This brings us to the SModelS output. SModelS primarily reports its results in the form of
r-values, defined as the ratio of the theory prediction over the observed upper limit, for each
experimental constraint that is matched in the database. Generally, all points for which at least one
A-value equals or exceeds unity (Amax ≥ 1) are considered as excluded. For EM-type results, when
computeStatistics=True, the likelihood and j2 are also reported. As an example, Figure 7
shows part of the output obtained for the gluino_squarks.slha sample input file located in
inputFiles/slha/.

Moreover, if testCoverage=True, SModelS prints a list of missing topologies: elements
which are not tested by any of the experimental results in the database (independent of the element
mass). Finally, outside grid elements, which could be tested by one or more experimental result,
but are not constrained because the mass array is outside the mass grid, are reported.

Different output formats are available: summary, stdout, log, python, xml, slha. They are
chosen and controlled from the parameters.ini file. A detailed explanation of the information
contained in each type of output is given in the SModels Output section of the online manual.

Although runSModelS.py provides the main SModelS features with a command line inter-
face, users more familiar with python and the SModelS language may prefer to write their own main
program. A simple, commented example code for this purpose is provided as Example.py in the
SModelS distribution. The How To’s in the online manual provide additional examples for using
SModelS and some of the SModelS Tools as a python library.

Last but not least, users can contact the SModelS developers at

smodels-users@lists.oeaw.ac.at

10

https://smodels.readthedocs.io/en/latest/OutputDescription.html#outputdescription
http://smodels.readthedocs.io/
https://smodels.readthedocs.io/en/latest/Examples.html
http://smodels.readthedocs.io/


P
o
S
(
T
O
O
L
S
2
0
2
0
)
0
2
2

New developments in SModelS Gaël Alguero and Sabine Kraml

Input status: 1

Decomposition output status: 1 #decomposition was successful

# Input File: inputFiles/slha/gluino_squarks.slha

# maxcond = 0.2

# minmassgap = 5.

# ncpus = 1

# sigmacut = 0.01

# Database version: 1.2.4

================================================================================

#Analysis Sqrts Cond_Violation Theory_Value(fb) Exp_limit(fb) r r_expected

ATLAS-SUSY-2016-07 1.30E+01 0.0 9.791E+00 1.270E+00 7.710E+00 9.151E+00

Signal Region: 5j_Meff_1600

Txnames: T1, T2, T5GQ, T5WW, T5ZZ, T6WW, TGQ

Chi2, Likelihood = 2.577E+01 2.469E-09

--------------------------------------------------------------------------------

CMS-SUS-19-006 1.30E+01 0.0 1.169E+01 5.138E+00 2.274E+00 1.898E+00

Signal Region: (UL)

Txnames: T2

--------------------------------------------------------------------------------

....

....

================================================================================

The highest r value is = 7.709501308305477

Figure 7: Part of the summary output (gluino_squarks.slha.smodels file) obtained when processing
./runSModelS.py -f inputFiles/slha/gluino_squarks.slha -p parameters.ini. This is an
MSSM scenario with <6̃ = 865 GeV and <@̃ ≈ 990 GeV. The results constraining this scenario are reported
from highest to lowest A-value. In this example, the highest A-value comes from the home-grown EMs for the
ATLAS-SUSY-2016-07 analysis (see Figure 4), combining the contributions from several signal topologies.
The second-highest A-value comes from the UL result for the T2 topology from CMS-SUS-19-009 (see
Table 2). The “Txnames” nomenclature for the topologies is explained in the SMS dictionary. Note that for
the EM result, the j2 and likelihood are reported in addition to the observed and expected A-values. The
full output also contains information on unconstrained cross sections (missing topologies and outside grid
elements), not displayed here.

for any questions or comments which may arise using the package. New contributors are also
always welcome.

5. Summary and outlook to SModelS 2.0

We gave a short introduction to constraining new physics with SModelS and presented two
important updates of the tool published in 2020: (i) a major database update with results from 13
ATLAS and 10 CMSSUSY searches at 13 TeV, and (ii) the interface to pyhf, which enablesSModelS
to use full likelihoods from ATLAS. The database update significantly increases the constraining
power of SModelS and the ability to use full likelihood models leads to a marked gain in accuracy
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(whenever full likelihoods are available).
While the examples discussed in this contribution focus on �miss

)
final states, the capabilities of

SModelS go beyond �miss
)

searches for new physics. Indeed, long-lived particles (LLPs) constrained
by searches for heavy stable charged particles (HSCP) or '-hadrons, can be treated in SModelS
since version 1.2 [3, 14]. These searches require the LLP to decay outside the (relevant parts of the)
detector, which introduces a dependence on the particle’s total decay width. To apply such results
to intermediate lifetimes, which lead to a fraction of the decays happening inside the detector,
SModelS computes the fractions of prompt decays and decays taking place outside the detector
assuming a constant boost factor for the LLP [14]. The impact of the currently implemented HSCP
searches has recently been demonstrated for the Dirac gaugino case in [49], where it was shown
that their constraining power is at the level of the full recasting approach.

Ongoing developments include amajor revision of the decomposition algorithm that enables the
support of general LLP signatures. Most significantly, it introduces the particles’ decay widths and
their quantum numbers as additional parameters of the simplified model topologies. Accordingly,
the experimental results in the database can be width dependent. This will enable to incorporate a
wide range of exotic signatures, such as searches for disappearing and kinked tracks, displaced jets
and leptons as well as delayed jets and photons. This is especially relevant for LLPs with decay
lengths of the order of millimeters to a few meters.

The inclusion of the particle quantum numbers in the SMS topologies will provide further
opportunities. For instance, it will permit to specify the applicability of certain experimental
results to BSM particles with specific spins, allowing to go beyond the assumptions mentioned in
footnote 1. Finally, the particle content of full models will be definable through the use of an input
SLHA file with QNUMBERS blocks, which will greatly simplify using SModelS for models other
than the MSSM. These features will be available with the upcoming SModelS version 2.0.
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