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Particle spectra from dark matter annihilation Adil Jueid

1. Introduction

Various gravitational, astrophysical and cosmological observations strongly imply the exis-
tence of Dark Matter (DM) in the universe. In particular, observations of the cosmological scale
structure favour the so-called cold DM (CDM) scenario where the DM was not relativistic in the era
of structure formation. In particle physics framework, the CDM scenario can be easily accounted
for by extending the Standard Model (SM) with weakly interacting massive particles (WIMPs) —
for a review see e.g. [1] —. An interesting feature of the CDM scenario is that WIMPs with mass
about O(100) GeV interacting primarily through weak interactions gives relic abundance of DM in
agreement with the observation made by the Planck satellite, i.e. Qpym h? =0.1188 + 0.0010 [2].

Indirect detection experiments such as the Fermi Large Area Telescope (LAT) [3], AMS [4] or
IceCube [5] provide one the possible ways to detect WIMPs. Theoretically, WIMPs undergo either
annihilation [6, 7], co-annihilations [8], or decays [9, 10] into a set of SM stable final-state particles
such as high energy photons, positrons, neutrinos, or anti-protons. Recently, an excess on the
gamma-ray spectra was detected by the Fermi-LAT [11], called the Galactic Center Excess (GCE)
which apparently seem to be consistent with predictions from DM annihilation (see e.g. [12]). On
the other hand, several attempts were made to address the GCE within particle physics models, in
particular within supersymmmetric models [13—-16]. An important finding is that the quality of the
fits depend crucially on the theoretical precision on the determination of the gamma-ray spectra [16].

Particle production from DM annihilation/decay processes is dominated by QCD jet fragmen-
tation.! Stable particles such as photons or positrons are then produced as a result of a complicated
set of processes which includes QED and QCD radiations, hadronisation, and hadron decays. Un-
like parton-level scattering amplitudes at e.g. the lowest order of perturbation theory, the problem
of hadronisation cannot be solved from first-principles. Jet universality tells us that hadronisation
is a universal process that can be factorised off the short-distance processes e.g. DM annihilation.
Phenomenological models such that Fragmentation Functions [17] or explicit dynamical models
such as the string [18, 19] or cluster [20, 21] models which are embedded in Monte Carlo (MC)
event generators [22] are the up-to-date solutions to the hadronisation problem. The essential point
is that the fragmentation-models’ parameters are to a very good approximation independent of
the short-distance processes; therefore, they can be determined from fits to existing data such as
e*e” — hadrons and used to make predictions for e.g. DM annihilation.

The question of the intrinsic QCD uncertainties on the predicted particle spectra in DM an-
nihilation is often neglected in the literature besides some comparisons between the predictions
of different multi-purpose event generators such as HErwic and PyTtaia. For instance, a compre-
hensive analysis has shown that different MC event generators may have excellent agreement in
both the peak as well as the bulk of the spectra while their agreement is not very good in the tails
[23]. Another study was done by the authors of the PPPC4DMID [24] where they highlighted the
differences between HeErwiG and PyTHiA event generators. The excellent level of agreement in the

I'This is true for DM masses above a few GeV producing hadronic final states either directly through e.g. y ¥ — ¢4
or indirectly via the decays of the intermediate heavy resonances such as the W/Z/H bosons or the top quark.
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Figure 1: Illustration of the main parameters that affect the photon spectra (x, = E,/m,) from DM
annihilation into jets. Here we show the electromagnetic coupling agym (left), the strong coupling as
(middle), and the nonperturbative fragmentation function f(z) (right).

most-populated regions of particle spectra may be interpreted as due to the fact that the different MC
generators tend to be tuned to roughly the same set of data mostly coming from LEP measurements
at the Z-boson pole [25-34]. Therefore, the envelope spanned by the predictions of the different
MC models cannot represent the true estimate of the uncertainty on the predicted spectra.

In this talk, we discuss a first study of the QCD uncertainties on particle spectra from DM
annihilation within the same MC model2. We take the default Monash 2013 tune [31] of the
PyTHIA version 8.2.35 event generator [36] as our baseline. We use a selection of experimental
measurements constraining from e*e™ colliders preserved in the River [26] analysis package
combined with the PrRoFEssOR [25] parameter optimisation tool. Then, we define a small set of
systematic parameter variations which explores the uncertainty envelope for the estimate of the
QCD fragmentation uncertainties on DM annihilation.

2. Physics Modeling and Measurements

2.1 Physics modeling

In this section, we discuss briefly the physics modeling in a generic DM annihilation, and the
origin of photons (a more detailed discussion can be found in [35]). To simplify the discussion, we
consider a generic DM annihilation process:

where we factorised the whole process into a production part y y — Xj---X,, and the decay
part (X; — Y1 ---Y;, with ¥;; is any stable object such as photon, neutrino or proton) assuming
the narrow-width approximation. We note three important processes which may occur after DM
annihilation and responsible for gamma-rays:

* QED bremsstrahlung: This process occurs if X (or the decay products Y') contains photons or
electrically charged particles. Additional photons are produced via X — X*y branchings

2In this work, we focused on the uncertainties within the PyTH1A8 event generator and the results we shown are based
on [35].
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with probabilities that are enhanced for both soft and collinear photons. On the other hand,
collinear photons dominate the spectra at the region x, — E,/m, — 1 with the only
requirement that the angle between the emitted photon and the parent particle is very small.
QED processes may lead to the production of charged fermion-antifermion pairs in photon
splittings (which are generally subleading) and the corresponding probabilities are enhanced
at very low values of Q% = (pr + pf)z. The rates of QED processes are governed by the
effective electromagnetic fine-structure constant, agy (illustrated in Fig. 1a).

* QCD showers: If X (or decay products Y) contains coloured particles, then these states
will undergo QCD showers. The modeling of the QCD showers is similar to the QED
one. Here, we can have enhancement of soft and collinear emissions — in ¢ — ¢g and
g — gg — and of g — ¢g at low virtualities. The main parameter governing the QCD
showering is the effective value of the strong coupling constant, as (see Fig. 1b) evaluated
at a scale proprtional to the shower evolution variable (p, in PytH1A8). Further sets of
universal corrections in the soft limit implies that the strong coupling should be defined
in the CMW [37] rather than the conventional MS scheme. Furthermore, good agreement
between PyTHIA8 and experimental measurements of e*e~™ — 3 jets [27, 31] increases the
value of ag(Mz) by about 10%. Perturbative uncertainty estimates can be performed by
variation of the evolution of the renormalisation by a factor of 2 in each direction with
respect to the nominal scale choice. The framework of the automated scale variations was
recently implemented in PyTHia [38] implies a compensation of second-order terms which
reestablishes the agreement with the CMW scheme. Variations of the no-universal (no-
singular) components of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting
kernels can be performed in this framework as it is detailed in [38].

* Hadronisation and hadron decays: Any produced coloured particles must be confined inside
colourless hadrons. This process — hadronisation — takes place at a distance scale of the
order of the proton size ~ 10~"°m and in PyTHia is modelled by the Lund string model;
see [18] for details. The majority of photons are produced from the decays of neutral pions
where the number and energy of these photons are strongly correlated with the predicted pion
spectra. The description of this process is embedded in the fragmentation function, f(z),
which gives the probability for a hadron to take a fraction z € [0, 1] of the remaining energy
at each step of the (iterative) string fragmentation process (see Fig. 1c). The fragmentation
function f(z) cannot calculated from first principles but its form can be constrained by
requirements such as causality. The general form can be written as

—bm?

Lh) | W

Flemuy) = NI exp(
Z Z

where N is a normalisation constant that guarantees the distribution to be normalised to unit

integral, and m, ) = | /m}zl + pih is called the “transverse mass’, with my, the mass of the
produced hadron and p, 5, its momentum transverse to the string direction, a and b are tunable
parameters which will be denoted respectively by StringZ:aLund and StringZ:bLund. We
note that the a and b parameters are extremely highly correlated. This makes it meaningless



Particle spectra from dark matter annihilation Adil Jueid

to assign independent + uncertainties on them. To address this question, we implement an
alternative parametrisation of f(z) where b is replaced by a < z > which represents the
average z fraction taken by p mesons.

1
(zp>:/0 dz z2f(z, (mip)) . )

which we solve (numerically) for b at initialisation when the option StringZ:deriveBLund
= on is selected in PyTHia 8.235, using the following parameters:

<mLp>2

<Zp >

2.2 Photon origins and available measurements

mf) +2(StringPT:sigma)’, 3)
StringZ:avgZLund . @

Here, we discuss briefly the origin of photons from DM annihilation (a very detailed discussion
can be found in [35]). Most of the photons are coming from pion decays; about 88-95% depending
on the annihilation channel and on the DM mass. The contribution from 7 decays is somewhat sub-
leading which is about 4%. Finally, very sub-leading contributions are coming from bremsstrahlung
photons and dominates in the high tail of the spectrum. Since the majority of photons (= 95%)
are coming from pion decays, the QCD uncertainties on photon spectra is strongly correlated to
those on the pion spectra. We can distinguish between primary pions directly produced from QCD
fragmentation and secondary pions coming from the decays of heavier hadrons and 7 leptons. In
all the final states [35], the number of secondary pions is larger than primary ones. The secondary
pions account for about 70%-85% of the total pions. We note that the secondary pions mainly come
from five sources: p*,n,w, D** and Ks 1.

After discussing the origin of photons in DM annihilation, we conclude that in addition to
the direct measurements of the photon spectrum, other measurements can be used to constrain the
spectrum: (i) the spectrum of neutral pions () since they are the most dominant source of photons
in QCD jets, (ii) the spectra of charged pions due to the fact that their number is related to 7° by
isospin symmetry and (iii) n spectrm as they are the second-most important source of photons in
QCD jets. Finally, it is important to ensure that these tunings do not produce large corrections
to infrared and collinear safe observables such as e.g. the C-parameter. The tunings will include
the full range of these observables including the back-to-back regions which are extremely sensi-
tive to non-perturbative QCD effects. These measurements provides important constraints on the
StringPT:sigma parameter in particular.

In Fig. 2, we compare several different multi-purpose MC event generators to measurements of
two the photon and 7° scaled momenta. We consider three event generators in these comparisons;
Herwic 7.1.3 [39] using both the angular-ordered [44] and dipole [28, 40] shower algorithms and
a cluster based hadronisation model [21], PyTHia 8.2.35 with the default model of hadronisation
[36] and SHERPA 2.2.5 [41] with the CSS parton shower [42] using both the Ahadic [20] (based on
the cluster model) and the PyTHiA 6.4 Lund hadronisation [43] models. The curve corresponding
to PyTHIA is shown with an uncertainty band (red) obtained using the results of our new tune, based
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Figure 2: Comparison between MC event generators and LEP and SLD measurements for the photon
spectrum (left pane), and the 7° spectrum (right pane).

on the recent MonasH tune but refitting the three main hadronisation parameters (see below). We
can see from Fig. 2 that the multi-purpose event generators agree pretty well except in a few regions
such as e.g. in the tails towards hard high-energy photons.

3. Tuning

3.1 Setup

We used PyTHIA8 version 8.235 throughout this study with the most recent Monash [31] tune
is used as baseline for the parameter optimisation. We use PrRoFEssor v2.2 [25] to perform the
tuning and R1ver v2.5.4 [26] for the implementation of the measurements. In PRoFESsoOR, a method
permits to make simultaneous optimisation of several parameters by using analytical approxima-
tions of the dependence of the MC response on the model parameters (this idea was introduced
first in Ref. [45]). In order to minimises the differences between the interpolated functions and
the true MC response, we use a fourth-order polynomial. The values of the model parameters at
the minimum are then obtained with a standard y? minimisation of the analytic approximation to
the corresponding data using MinNurr [46]. In this work, we tuned the a and b parameters of the
Lund fragmentation function (a and < z,, > in the new parametrization) and the o~ parameter which
governs the transverse components (see e.g. [47]). The default values of the parameters and their
allowed range in PyTH1A8 are shown in Table 1.

To protect against over-fitting effects and as a baseline sanity limit for the achievable accuracy,
we introduce an additional 5% uncertainty on each bin and for each observable. This also substan-
tially reduces the value of the goodness-of-fit measure so that the resulting y?/ndf is consistent
with unity (see Table 2). The /\(2 /Npor is defined by:

X? _ 1 Y0 wo Lpeofin)(P) — Rp)?
Noor  Xowolb €Ol (A2 +(0.05f)(P)?)

)
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parameter PyTHIAS setting Variation range MONASH
o, [GeV] StringPT:Sigma 00-1.0 0.335

a StringZ:alund 0.0-2.0 0.68

b StringZ:bLund 02-2.0 0.98
(zp> StringZ:avgZLund 03-0.7 (0.55)

Table 1: Parameter ranges used for the PyTHia 8 tuning, and their corresponding value in the Monash tune.
The parenthesis around the Monash value of the (zp> parameter indicates that this is a derived quantity, not
an independent parameter.

Parameter without 5% with 5%
StringPT:Sigma 0.315120019  0.3227+)-9928
StringZ:aLund 1.028+0-%31 0.97679-923
StringZ:avgZLund  0.553470-9019  0.5496+0-9026
X%/ Npor 5169/963 778/963

Table 2: Results of the tunes before and after including a flat 5% uncertainty to the theory prediction.

Here wo represents the weight per observable and per bin, f;)(p) is the interpolated function
per bin b, R, is the experimental value of the observable O and A, is the experimental error per bin,
with f(3) is the 4th order interpolated polynomial used to model the MC response. We use various
experimental measurements from Lep and SiLc at the Z-boson peak produced by ALEPH, DELPHI,
L3, OpaL and SLp.

3.2 Results

In this section, we discuss briefly the results of the different retunings (for a more detailed
discussion please see [35]). In Table 2, we show the results of the tunes with and without the
additional 5% flat uncertainty. We can see that the goodness-of-fit is improved a factor of 7
bringing it close to unity for the second fit (with 5% uncertainty). Therefore, we can see that the
additional 5% uncertainty provide a useful protection against over-fitting.

We show the possible tensions in the data measured by the different experiments by making
independent tunes including all of the sensitive measurements by each experiment. We performed
five independent tunes corresponding to the individual measurements by ALepH, DELPHI, L3, OPAL
and Sip and display these results in Fig. 3. We can see that the tunes to ALEPH, DELPHI, OPAL
and SLp are in agreement regarding the obtained value of StringZ:avgZLund contrarily to L3.
Due to the correlations between the a and the b (or < z, >) parameters, we cannot say that
these discrepancies in the individual best-fit points is a sign of disagreement between theoretical
predictions and data, i.e. the predictions at the best-fit point will agree with each other and with
data.
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Figure 3: Results of tunes performed separately to all of the measurements from a given experiment; ALEPH
(blue), DeLPHI (magenta), L3 (red), OpaL (green), SLp (yellow) and COMBINED (gray). The contours
corresponding to one, two and three sigma deviations are also shown.

Parameter Value
StringZ:alund 0.5999 + 0.2

. 0.027
StringZ:avgZLund 0.5278%)05]

. . 0.042
StringPT:sigma 0-3174fo.037

Table 3: Result of the single fit to all the measurements as obtained from independent optimisation to
N(= 15) measurements. The quoted errors correspond to the 68% CL uncertainty on the fit.

4. QCD uncertainties

4.1 Estimating the uncertainties

The QCD uncertainties can be split into two categories: perturbative related to parton showers
and non-perturbative related to the hadronisation model parameters. The uncertainties on parton
showering within PyTH1A8 were estimated using the automatic method developed in [38]. The
uncertainty in this case is determined by variation of the central renormalisation scale by a factor
of 2 in two directions with a full NLO recompensation terms. Furthermore, this framework can
allow for variations of the non-singular terms in the DGLAP splitting kernels. We notice that these
variations give, in most of the cases, very small uncertainties and, therefore, will be neglected.

On the non-perturbative side, the ProFEssor toolkit allows to estimate uncertainties on the
fitted parameters through the eigentunes method which diagonalises the y? covariance matrix
around the best-fit point. Then, it uses variations along the principal directions (eigenvectors) in
the space of the optimised parameters to construct a set of 2 - Nparams variations. However, the
resulting eigentunes are found to provide small uncertainties which cannot be interpreted as a
conservative3. Therefore, we will devise a new method.

3We have checked that the impact of the eigentunes on the gamma-ray spectra in different final states and for
different DM masses including the ones corresponding to the pMSSM best fit points and we have found that the bands
obtained from the eigentunes are negligibly small.
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Figure 4: Photon energy distribution for dark matter annihilation into W*W~ with m, = 90.6 GeV (left) and
into ¢f with m, = 177.6 GeV (right). In the two cases, the result corresponding to the new tune is shown in
black line. Both the uncertainties from parton showering (gray bands) and from hadronisation (blue bands)
are shown. Predictions from HErwiG7 are shown as a gray solid line.

The new method consist of making a new tuning where we use N different measurements to
get N best-fit points. We then take the 68% CL errors on the parameters to be our estimate of the
uncertainty (we exclude observables with little or no sensitivity on our parameters). The results of
these fits along with their 68% CL errors are shown in Table 3. To get a comprehensive estimate
of the uncertainty bands from the 68% CL errors on the model parameters, we consider all the
possible variations; there are Ny, = 33 — 1 = 26 variations. There are, however, some variations
which don’t give significant impact on the predicted spectra. We have checked that there are ten
meaningful variations (including the nominal tune).

4.2 Impact on Dark Matter Spectra and Fits

In this subsection, we show the results of the of QCD fragmentation-function and parton-shower
uncertainties on the photon spectra of two representative DM annihilation channels: W* W~ and r74.
We do not perform a full analysis to determine the best fit of the GCE, using PASS8 data performed
in the pMSSM [13] but only show qualitatively the size of the uncertainties. As the best-fit point
will be certainly affected by these uncertainties, we postpone this to a future study. In the analysis
of [13], the best-fit was found for two neutralino masses, i.e m, = 90.6 GeV and m, = 177.6 GeV
corresponding to the W*W~ and 7 DM annihilation channels respectively. These results are shown
in Fig. 4 for m, = 90.6 GeV in the W*W~ channel (left panel) and for m, = 177.6 GeV in the 17
channel (right panel) with the new tune (black line) and the HErwiG prediction (green line). The
bands show the PyTHia parton-shower (gray bands) and hadronisation (blue bands) uncertainties.
We can see that the predictions from PyThia and HErwiG agree very well except for E, < 2 GeV
where differences can reach about 21% for E, ~ 0.4 GeV. One can see that the uncertainties can be
important for both channels particularly, in the peak region which corresponds to energies where
the photon excess is observed in the galactic center region. Indeed, combining them in quadrature

“For comparison, we show the predictions of HERwIGT.
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Figure 5: Photon spectra obtained using our tune normalized to the results of [24] for m, = 10 GeV (left
pane), m,, = 100 GeV (center pane) and m, = 1000 GeV (right pane). The spectra are shown for DM
annihilation into gg (red), WEW7T (green) and #f (blue). The dashed bands show the QCD uncertainties on
the parameters of the Lund fragmentation function.

assuming the different type of uncertainties are uncorrelated, they can go from few percents where
the GCE lies to about 70% in the high energy bins. Furthermore hadronisation uncertainties are the
dominant ones around the peak of the photon spectrum. The parton showering uncertainties can
change the peak of the energy spectra and are the main source of uncertainties while moving away
toward the edges of the spectra.

5. Public Data on Zenodo

The impact of the QCD uncertainties on the particle spectra from DM annihilation were
produced in the form of tables which can be found in Zenodo [51]. We have produced tables
for five stable final states; gamma-rays, positrons, electron anti-neutrinos, muon anti-neutrinos
and tau anti-neutrinos — the work on the spectra of anti-protons is in progress [52] —. The
calculations were done for various DM annihilation channels; yy — e*e”,u*u",7777,9q(q =
u,d,s),cc, bb,tt, W*W~,ZZ, gg, and hh. We covered DM masses from 5 GeV to 100 GeV. For each
final state, and annihilation channel, there are twelve tables which are provided in zip format. The
notation of the different tables is given below:

* The table corresponding to the central prediction for the spectra is denoted by *AtProduction-
Hadronization1-$TYPE.dat’ with $STYPE=Nuel, Numu, Nuta, Ga, and Positrons refers to the
three flavours of anti-neutrinos, gamma-rays and positrons respectively.

 There are nine tables corresponding to the different variations of the light quark fragmentation-
function’s parameters. These tables are denoted by ’AtProduction-Hadronization$h-$TYPE.dat’
with h=2,..,10.

* The particle spectra corresponding to the variations of the shower evolution scale (ug) are
denoted by ’AtProduction-Shower-Var$s-$TYPE.dat” with s=1,2 corresponds to ug/2 and

2/JR.

We stress that the uncertainties from parton shower and hadronisation were taken to be uncorrelated
(more details on the generation of the spectra can be found in [35]).

10
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Finally, we have compared our predictions to the results of the PPPC4DMID. We show the
comparison between our predictions and the results of the PPPC4ADMID in the photon spectra for
three DM masses; m, = 10,100 and 1000 GeV. We have chosen three final states, i.e ¢4, = u,d, s,
W*WT and 7. We can see that the differences between our results and the predictions of the
Cookbook can be very important, particularly in the edges of the distributions (small x, and large
x,). As these differences cannot be accounted for by QCD uncertainties (shown as dashed bands in
Fig. 5), we urge to use the updated predictions from this study.

6. Conclusions

In this talk, we discussed the study of the QCD uncertainties on particle spectra from DM
annihilation which we studied for the first time in [35]. We demonstrated that the relative differences
between the predictions of different multi-purposes MC event generators (HErwiG 7.1.3, PyTHiA
8.235 and SHErPA 2.2.5) cannot be used to define a conservative estimate of QCD uncertainties
particularly in the bulk of the spectra. We studied a complementary approach by using the same
modeling paradigm (PyTHIA8) to define parametric variations taking the default MonasH tune as
our baseline and performed several retunings using data from LEP. Next, we show quantitatively
the impact of the QCD uncertainties on the spectra of gamma-rays from DM annihilation in
two benchmark points in the pMSSM. Full data tables which can be used to update those in
the PPPCADMID are public now on Zenodo and can be found in http://doi.org/10.5281/
zenodo. 3764809.
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