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1. Introduction

The StandardModel (SM) of particle physics is an extremely successful model. However, there
are several experimental as well as theoretical indications for new physics (NP) beyond the SM.
Whether a givenNP scenario describes the experimental data better than the SM can be conveniently
quantified by the ratio of the NP likelihood !NP and the SM likelihood !SM or, equivalently, by the
difference of the log-likelihoods

Δ log ! = log !NP − log !SM . (1)

These likelihood functions are constructed from a set of measured observables and take into account
uncertainties and correlations from both the measurements and the theoretical predictions.

A set of observables for which certain NP scenarios can describe the experimental data con-
siderably better than the SM have been found e.g. in � meson decays. These so-called � anomalies
correspond to deviations from the SM predictions in measurements of neutral current 1 → Bℓℓ and
charged current 1 → 2ℓa transitions. In particular, deviations have been found in

(i) angular observables of �→  ∗`+`− [1–5],

(ii) branching ratios of �→  `+`−, �→  ∗`+`−, and �B → q`+`− [6–8],

(iii) the lepton flavor universality (LFU) observables ' (∗) [9–12], which are `/4 ratios of
�→  (∗)ℓ+ℓ− branching ratios,
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(iv) the branching ratio of �B → `+`− [13–17],

(v) the LFU observables '� (∗) [18–25], which are g/4 and g/` ratios of � → � (∗)ℓa branching
ratios.

While (i) and (ii) could be afflicted by underestimated hadronic uncertainties, the observables in
(iii), (iv), and (v) are theoretically clean probes of NP [26–28]. Considering the above �-decay
observables and parameterizing NP in 1 → Bℓℓ and 1 → 2ℓa transitions in terms of Wilson
coefficients in the Weak Effective Theory (WET), simple one- and two-parameter scenarios show a
sizable Δ log ! ∼ 20 (cf. e.g. [29–34]).

These intriguing hints for NP have led to extensive model building. In the process, important
insights have been gained:

• The fact that NP above the electroweak (EW) scale has to respect SM gauge invariance leads
to important correlations between low-energy observables. For example, explanations of
'� (∗) in terms of left-handed contributions to 1 → 2ga imply also contributions to 1 → Baa,
which are constrained by �→  (∗)aā [35].

• One-loop contributions can have very important effects. This has been observed in models
explaining '� (∗) and ' (∗) using mostly 3rd generation couplings. They actually modify g
and / decays at one loop, which leads to strong constraints [36]. Another example is provided
by models explaining '� (∗) using a contribution to semi-tauonic operators, which generate
an effect in 1 → Bℓℓ at one loop [37, 38].

Essentially every model that explains some of the � anomalies predicts deviations from the SM
also in other observables. In many cases, this leads to strong constraints or exclusion of a model.
So phenomenological analyses that consider only a small set of observables or neglect one-loop
contributions are in many cases not sufficient to show that a given model agrees with experimental
data better than the SM. In order to show this, it is in general necessary to

• compute all relevant observables ®$ ( ®b) (flavor observables, EW precision observables
(EWPO), etc.) in terms of the Lagrangian parameters ®b of a NP model,

• take into account loop effects when computing the observables,

• compare the theory predictions to experimental data by constructing the NP likelihood !NP.

Performing these steps again and again for each single model one wants to analyze is a tedious
task. Fortunately, analyses of NP models can be tremendously simplified by making use of the SM
effective field theory (SMEFT) in an intermediate step.

2. The SMEFT Likelihood

Assuming that the scale of NPΛNP is considerably larger than the EW scale and EW symmetry
breaking is realized linearly, the NP effects in a given observable can be expressed in terms of the
Wilson coefficients �8 of the SMEFT, which are defined by the SMEFT Lagrangian [39, 40]

LSMEFT = LSM +
∑
=>4

∑
8

�8

Λ=−4
NP
O8 , (2)
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where O8 are local SM gauge invariant operators constructed from the SM fields and = is their
canonical dimension.

The SMEFT is a powerful tool since it can connect the model building at the high scale ΛNP to
the phenomenology at lower scales without the need to compute hundreds of observables in each
model. A phenomenological analysis can be split into

• amodel-dependent part that consists ofmatching theNPmodel to the SMEFT at the scaleΛNP,

• the model-independent phenomenology, which corresponds to

– running down the Wilson coefficients ®� from ΛNP to the low scale at which the observ-
ables are computed,

– predicting all the relevant observables ®$ ( ®�) in terms of the Wilson coefficients ®�,
– constructing the NP likelihood !NP( ®$ ( ®�)) that compares the predictions to experimen-

tal measurements,

– computing Δ log ! using eq. (1) in order to compare the NP model to the SM.

While it might be preferable to perform the model-dependent matching at one-loop, a large number
of important one-loop effects is actually already included by themodel-independent renormalization
group (RG) running and mixing in the SMEFT.

Using the above procedure, a SMEFT likelihood function !NP( ®�) can tremendously simplify
analyses of NP models. Many likelihood functions in the SMEFT have been considered in the
literature (see e.g. [41–55]). However, most of them are constructed from observables in one or
few specific sectors, like EWPO, Higgs physics, top physics, � physics, or lepton flavor violating
observables. But as discussed above, NP models generically predict new effects in several ob-
servables of various sectors. Furthermore, SMEFT operators belonging to different sectors mix
under renormalization. Consequently, to test a NP model, the sectors should not be considered
separately. It is in fact necessary to construct the global SMEFT likelihood, taking into account as
many observables from as many sectors as possible.

3. The smelli Python package

In [56], we have started constructing a global SMEFT likelihood that is provided by the Python
package smelli (SMEFT likelihood). It is based on

• the Python package flavio [57] that can compute hundreds of flavor and other precision
observables in and beyond the SM, while properly accounting for theory uncertainties,

• the Wilson coefficient exchange format (WCxf) [58] that is used to represent and exchange
large sets of Wilson coefficients in various EFTs and bases,

• the Python package wilson [59] that performs the RG evolution in the SMEFT and the WET
as well as the matching between them.

smelli is built upon these tools and implements a SMEFT likelihood function constructed from
currently 399 observables. In particular, it includes
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• flavor-changing neutral current � decays,
• lepton flavor universality tests in charged- and neutral-current � and  decays,
• meson-antimeson mixing in the  , �, and � systems,
• charged lepton flavor violating �, tau, and muon decays,
• the anomalous magnetic moments of the electron, muon, and tau,
• / and, pole EWPO,
• nuclear and neutron beta decays,
• Higgs signal strengths.

Given any combination of SMEFT or WET Wilson coefficients, smelli computes the Δ log ! for
each of the above sectors and then sums all of them to obtain the global Δ log !.

The full global likelihood is work in progress and the development is open to everyone. The
open-source code of smelli is available at https://github.com/smelli/smelli.

3.1 Installation

The requirements for smelli are a working installation of Python version 3.5 or above and the
Python package manager pip. If both are present, smelli can be installed from the command line
by entering

python3 -m pip install smelli --user

This will download smelli and all its dependencies from the Python package archive (PyPI) and
install it in the user’s home directory without requiring root privileges (due to the option --user).

3.2 Using smelli

Like any Python package, smelli can be used

• as a library imported from other scripts,
• directly in the command line interpreter,
• in an interactive session, e.g. in a Jupyter notebook.

How to use smelli is demonstrated in the following with examples from an interactive Jupyter
notebook. This notebook is available at https://github.com/peterstangl/smelli-talk.
For further information on the features of smelli, see [56] and the API documentation at https:
//smelli.github.io.

3.2.1 Instantiating the likelihood

The main functionality of smelli is provided by the GlobalLikelihood class. It is imported by

In: from smelli import GlobalLikelihood

If the GlobalLikelihood class is instantiated without any argument,

In: gl = GlobalLikelihood()

5
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the likelihood is defined in the space of SMEFT Wilson coefficients in the Warsaw basis (for
details on the specifications of the supported EFTs and bases, see the WCxf website at https:
//wcxf.github.io/bases.html). The EFT and basis of a given GlobalLikelihood instance
can be accessed via its eft and basis attributes.

In: gl.eft, gl.basis

Out: ('SMEFT', 'Warsaw')

In order to create a likelihood function of Wilson coefficients in the WET, one can provide the eft
and basis arguments on instantiation of a GlobalLikelihood instance.

In: gl_wet = GlobalLikelihood(eft='WET', basis='flavio')

gl_wet.eft, gl_wet.basis

Out: ('WET', 'flavio')

3.2.2 Fixing a point in Wilson coefficient space: 3 equivalent ways

The point in theWilson coefficient space at which the likelihood should be computed is defined using
the parameter_pointmethod. This method returns an instance of the GlobalLikelihoodPoint
class that can be used to compute Δ log !. The values of the Wilson coefficients can be provided in
three equivalent ways:

• A dictionary of Wilson coefficients as well as the scale in GeV at which they are defined can
be passed directly as arguments.

In: pp = gl.parameter_point({'lq3_2223': 1e-9}, scale=1000)

• An instance of the Wilson class from the wilson package can be passed as a single argument.

In: from wilson import Wilson
w = Wilson({'lq3_2223': 1e-9}, scale=1000,

eft='SMEFT', basis='Warsaw')

pp = gl.parameter_point(w)

• A WCxf file, e.g. a file in YAML format named my_wcxf.yaml and containing

eft: SMEFT

basis: Warsaw

scale: 1000

values:

lq3_2223:

Re: 1e-9

can be read in by providing the path to the file as argument.

In: pp = gl.parameter_point('my_wcxf.yaml')
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3.2.3 Computing the likelihood

After the Wilson coefficients have been fixed and an instance of GlobalLikelihoodPoint has
been created, it can be used to compute Δ log !. In smelli, the global Δ log ! is given in terms of
the sum of several individual Δ log ! that are constructed from subsets of observables. To access all
these individual Δ log !, the method log_likelihood_dict can be used. It returns a dictionary
containing the names of the individual likelihoods and the corresponding Δ log ! values. Using the
above defined parameter point, one gets

In: pp.log_likelihood_dict()

Out: {'fast_likelihood_quarks.yaml': 18.063309775625527,

'fast_likelihood_leptons.yaml': -7.954151298861234e-05,

'likelihood_ewpt.yaml': 0.0019331634397694586,

'likelihood_eeww.yaml': -0.0001731988511934901,

'likelihood_lept.yaml': 3.7762380644679183e-07,

'likelihood_rd_rds.yaml': 0.27864506193111893,

'likelihood_lfu_fccc.yaml': 0.0005027179997831865,

'likelihood_lfu_fcnc.yaml': 3.0607966063245655,

'likelihood_bcpv.yaml': 0.013775072147421241,

'likelihood_bqnunu.yaml': -0.119578242544371,

'likelihood_lfv.yaml': 0.0,

'likelihood_zlfv.yaml': 0.0,

'likelihood_higgs.yaml': 2.176258307784451e-05,

'global': 21.299153554766516}

While the global Δ log ! is provided by log_likelihood_dict, its value can also be directly
returned using the log_likelihood_global method.

In: pp.log_likelihood_global()

Out: 21.299153554766516

Apart from Δ log !, it is also possible to compute the total j2
NP, defined by

j2
NP = −2 log !NP , (3)

where !NP is normalized such that it is 1 if the central values of the theory predictions are equal to
the central values of the measurements for all observables. A dictionary containing the individual
values of the total j2

NP is returned by the chi2_dict method.

In: pp.chi2_dict()

Out: {'fast_likelihood_quarks.yaml': 160.14558316478963,

'fast_likelihood_leptons.yaml': 23.57908813232271,

'likelihood_ewpt.yaml': 35.3618189920579,

'likelihood_eeww.yaml': 61.19130715429686,

'likelihood_lept.yaml': 1.4486600571844703,
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'likelihood_rd_rds.yaml': 34.10567278343568,

'likelihood_lfu_fccc.yaml': 49.155325606131306,

'likelihood_lfu_fcnc.yaml': 24.16370720780219,

'likelihood_bcpv.yaml': 5.140098429647292,

'likelihood_bqnunu.yaml': 21.417983245315177,

'likelihood_lfv.yaml': 8.998264557313096,

'likelihood_zlfv.yaml': -0.0,

'likelihood_higgs.yaml': 55.781752694208386,

'global': 480.4892620245047}

These values are particularly useful for computing p-values from the total j2
NP and the number

of observations. The latter are returned by the number_observations_dict method of the
GlobalLikelihood instance (which can be conveniently accessed using the likelihood attribute
of the GlobalLikelihoodPoint instance).

In: pp.likelihood.number_observations_dict()

Out: {'fast_likelihood_quarks.yaml': 144,

'fast_likelihood_leptons.yaml': 7,

'likelihood_ewpt.yaml': 30,

'likelihood_eeww.yaml': 48,

'likelihood_lept.yaml': 2,

'likelihood_rd_rds.yaml': 11,

'likelihood_lfu_fccc.yaml': 63,

'likelihood_lfu_fcnc.yaml': 21,

'likelihood_bcpv.yaml': 6,

'likelihood_bqnunu.yaml': 22,

'likelihood_lfv.yaml': 41,

'likelihood_zlfv.yaml': 7,

'likelihood_higgs.yaml': 67,

'global': 469}

Note that here an “observation” is defined as an individual measurement of an observable. Thus,
the number of observations is always greater than or equal to the number of observables.

3.2.4 Table of observables

smelli provides information on individual observables. In particular, the theoretical and experi-
mental central values and uncertainties as well as the pull compared to the SM or the experimental
data can be obtained. All this information is contained in an “observable table” that is returned in
the form of a Pandas [60, 61] DataFrame object by the method obstable.

In: df = pp.obstable()

8
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In a Jupyter notebook, a Pandas DataFrame is shown as a table.

In: df

Out: experiment exp. unc. theory th. unc. pull exp. pull SM

a_mu 0.00116592 6.31304e-10 0.00116592 4.25176e-10 3.49239 -4.46085e-05

Rtaul(B->D*lnu) 0.296146 0.015608 0.244875 0 3.30606 -0.389707

(<dR/dtheta>(ee->WW), 198.38, 0.8, 1.0) 6.535 0.236 7.236 0 2.97036 0.0112166

BR(W->taunu) 0.1138 0.0021 0.108417 0 2.56345 -0.00503662

epsp/eps 0.00166382 0.000227703 -3.12549e-05 0.000637111 2.50537 0.0147821

... ... ... ... ... ... ...

BR(tau->phie) 0 1.88467e-08 0 0 0 0

BR(tau->phimu) 0 5.10684e-08 0 0 0 0

BR(Z->emu) 0 2.33094e-07 0 0 0 0

BR(Z->etau) 0 2.59807e-06 0 0 0 0

BR(Z->mutau) 0 2.69574e-06 0 0 0 0

399 rows × 6 columns

The Pandas DataFrame is a convenient object for tabulated data and provides many useful features.
E.g. one can sort the rows by the values of a given column,

In: df.sort_values('pull SM', ascending=True)[:5]

Out: experiment exp. unc. theory th. unc. pull exp. pull SM

(<dBR/dq2>(Bs->phimumu), 1.0, 6.0) 2.55342e-08 3.72621e-09 4.04247e-08 6.44267e-09 2.0007 -3.24157

(<Rmue>(B0->K*ll), 1.1, 6.0) 0.681356 0.123108 0.746295 0 0.623038 -2.4685

BR(Bs->mumu) 2.73001e-09 3.80964e-10 2.73442e-09 1.47033e-10 0.0108006 -2.29374

(<dBR/dq2>(Bs->phimumu), 15.0, 19.0) 4.05106e-08 5.09449e-09 4.08896e-08 4.5361e-09 0.0555647 -2.21418

(<dBR/dq2>(B0->K*mumu), 15.0, 19.0) 4.35409e-08 3.61869e-09 4.35383e-08 6.16124e-09 0.000370693 -2.20919

or select a specific row by its name.

In: df.loc[['Rtaul(B->D*lnu)']]

Out: experiment exp. unc. theory th. unc. pull exp. pull SM

Rtaul(B->D*lnu) 0.296146 0.015608 0.244875 0 3.30606 -0.389707

9
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3.2.5 Plots

Given a likelihood function, one common task is to plot this function in a 2D plane. In order to
simplify this, smelli provides a method to compute the plot data for all individual likelihoods. For
demonstration, it is convenient to define a GlobalLikelihood instance for which the likelihood
can be computed much faster than in the default case. This can be achieved by considering only a
subset of observables, e.g. only EWPO and the Higgs signal strengths.

In: gl_ewpt_higgs = GlobalLikelihood(include_likelihoods=[

'likelihood_ewpt.yaml',

'likelihood_higgs.yaml',

])

The next step is to define a function of the two plot parameters that returns a dictionary of Wilson
coefficients. This function defines what is actually plotted. It can be a trivial function that takes two
Wilson coefficients as arguments and just returns them, but it can also be a complicated function
of two NP model parameters that returns a large set of Wilson coefficients depending on these two
parameters. As an example, we will reproduce figure 2 of [62] and plot the likelihood in the space
of the ( and ) parameters. They are proportional to the SMEFT Wilson coefficients �q, � and
�q� , and their relations are given by

�q, � =
6! 6.

16 c E2 ( , �q� = −
62
!
62
.

2 c (62
!
+ 62

.
) E2

). (4)

Consequently, plugging in the SM parameters, the function that takes ( and ) as arguments and
returns a dictionary of Wilson coefficients can be defined as follows.

In: def wc_fct(S, T):
return {

'phiWB': S * 7.643950529889027e-08,

'phiD': -T * 2.5793722852276787e-07,

}

This function can now be used as the first argument of the plot_data_2d method of the
GlobalLikelihood instance. The second argument is the scale at which the Wilson coeffi-
cients are defined, followed by the minimum and maximum values for the x- and y-axis. In the
function call below, also two optional arguments are given: the number of steps in each direction
(steps = 10 results in plot data computed on a 10× 10 grid), and the number of CPU threads to be
used for the computation.

In: plot_data = gl_ewpt_higgs.plot_data_2d(

wc_fct,

91.1876,

-0.2, 0.2, -0.1, 0.3,

steps=10,

threads=8,

)

10
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The plot_data_2d method returns a dictionary with the names of the individual likelihoods as
keys and values that are again dictionaries. The keys in these latter dictionaries are x, y, and z and
the values are arrays. Here, x and y correspond to the coordinates in the 2D plane and z to the values
of Δj2 = −2Δ log ! at these coordinates. The dictionaries with keys x, y, and z are constructed in
such a way that they can be directly fed to the contour plotting function of the flavio package.
The relevant submodules for plotting have to be imported from flavio and matplotlib [63] (on
which the flavio plotting functions are based on).

In: import flavio.plots as fpl
import matplotlib.pyplot as plt

In order to plot Δj2 contours corresponding to a given pull in units of f, the contour levels can be
defined using the flavio function delta_chi2, which takes the number of f and the number of
degrees of freedom as arguments.

In: levels_1sig = [fpl.delta_chi2(1, dof=2)]

levels_123sig = [fpl.delta_chi2(n_sigma, dof=2) for n_sigma in (1,2,3)]

The data can now be plotted. The function fpl.contour is called three times, once for each
of the three different likelihoods: Higgs physics, EWPO, and their combination. Furthermore,
horizontal and vertical axes as well as labels are added. A value larger than one for the argument
interpolation_factor of fpl.contour makes the contours appear smooth. However, if the
plot data has been computed on a small grid, interpolation_factor can obscure the fact that
the data might be insufficient for a reasonable plot. In fact, for more reasonable plots, the number
of steps should be increased to at least 20 (but this of course also increases the computing time).
From the data computed above, the plot is then generated by the following code.

In: plt.figure(figsize=(5,5))

fpl.contour(**plot_data['likelihood_higgs.yaml'], levels=levels_1sig,

label=r"Higgs ($1\sigma$)", interpolation_factor=9,

color='C0')

fpl.contour(**plot_data['likelihood_ewpt.yaml'], levels=levels_1sig,

label=r"EWPO ($1\sigma$)", interpolation_factor=9,

color='C1')

fpl.contour(**plot_data['global'], levels=levels_123sig,

label=r"global", interpolation_factor=9,

color='C3')

plt.axhline(c='0.6', linewidth=1)

plt.axvline(c='0.6', linewidth=1)

plt.xlabel(r'$S$')

plt.ylabel(r'$T$')

plt.legend()

plt.show()
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4. Conclusions

Models that explain experimental deviations from the SM in certain observables generically
predict also effects in other observables. This is e.g. the case for most models that explain the
� anomalies. Consequently, to test such models, one has to consider a global likelihood constructed
from as many observables as possible.

This article shows how to use the python package smelli, which implements a global SMEFT
likelihood function. It can be used to either test models, or to interpret data model-independently
in the WET and the SMEFT. To date, 399 flavor and other precision observables are included in the
likelihood.

The full global likelihood is work in progress. Since smelli is completely open source, you
are welcome to join us on https://github.com/smelli/smelli and to participate in the effort
to make smelli truly global.
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