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1. Data analysis in Lattice QCD

Lattice QCD is nowadays able to provide precise results for many quantities of phenomeno-
logical interest. A key ingredient in providing solid results is the analysis of lattice QCD data.

Lattice QCD is based on discretizing space-time in a hypercubic grid of spacing a. The usual
computation of QCD observables requires the evaluation of path integrals. On the lattice these
observables are computed as integrals over very many dimensions. The biggest appeal of the
method is that these integrals can be estimated using large-scale computer simulations and Monte
Carlo methods. The usual workflow in lattice QCD analysis is the following

Production of configurations A representative ensemble of the discretized lattice QCD action is
generated using large scale computer simulations. These are usually called configurations.

Measurements of primary observables Several observables of interest, like hadron masses (aMp q,...),
decay constants (a fr k.p....), form factors, etc. . . are measured in lattice units on the config-
urations generated on the previous step. These are usually called primary observables.

Data analysis The observable of interest is generically a function of these primary observables.
These are called derived observables.

The challenges in data analysis are, on one hand, to control the systematic uncertainties
associated with the different extrapolations (to the continuum a — 0, to the infinite volume limit,
etc. .. ) required to produce a final answer.

On the other hand we have to correctly account for the statistical uncertainties of the results.
This includes a correct estimate of errors taking into account the autocorrelation of data measured in
a Monte Carlo chain. We also have to take into account the correlation of observables measured on
the same configurations. It is important to note that the functions that define the derived observables
commonly involve iterative algorithms (cf. section 3).

In these proceedings contribution we present a freely available analysis code, ADerrors. jl
(https://gitlab.ift.uam-csic.es/alberto/aderrors. jl), that aims to simplify the data
analysis. It combines the determination of statistical uncertainties using the I'-method[1-3] with
automatic differentiation techniques for error propagation [4]. We think that some of the techniques
that are used for error propagation are potentially useful beyond the lattice QCD community.

1.1 Installation

The software is written in Julia (https://julialang.org). The package in not in the
general registry. Still one can use the package manager to install it. ADerrors. jl also depends
on BDIO. j1 that is also not registered and should be installed beforehand. In summary the steps to
have a fully functional working environment are:

Code (Julia)

julia> import Pkg
julia> Pkg.add("https://gitlab.ift.uam-csic.es/alberto/bdio.jl")
julia> Pkg.add("add https://gitlab.ift.uam-csic.es/alberto/aderrors.jl")
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2. A calculator with uncertainties

At the center of the package ADerrors. jl is the data type uwreal. Generally speaking, a
uwreal data type contains the value and the different sources of uncertainties of a variable. Here
we list the main concepts to work with these variables:

e Callingvar = uwreal([x,dx], "TAG") will define var as auwreal variable with central
value x and uncertainty dx. The user provided "TAG" allows the user to keep track of the
different contributions to the uncertainty of a variable.

* One can perform normal operations with uwreal data types, as if they were normal real
variables: var2 = 2.0*sin(var)/var will propagate errors from var to var2.

* Calling uwerr(var) will determine the total uncertainty in var.
* value(var) and err(var) return, respectively, the central value and total error of var.
* Calling details(var) will give the contribution to the total error of var from each source.

Here we show an example that shows that ADerrors.jl can be used a “calculator with
uncertainties” that automatically takes care of error propagation and correlations.

Code (Julia)
julia> x = uwreal([12.31,0.23], "Experiment A") # x 12.31(23) from experiment A

12.31 (Error not available... maybe run uwerr)

julia> y = uwreal([4.22,0.12], "Experiment B") # y=4.22(12) from experiment B
4.22 (Error not available... maybe run uwerr)

julia> z = x + vy

16.53 (Error not available... maybe run uwerr)

julia> uwerr(z) # Determine total error in z

julia> println(z) # sqrt(0.2342+0.1242) = 0.25... (exp. A and B uncorrelated)
16.53 +/- 0.25942243542145693

julia> details(z)
16.53 +/- 0.25942243542145693
## Number of error sources: 2

## Number of MC ids 00

## Contribution to error : Ensemble [%] [MC length]
# Experiment A 78.60 -
# Experiment B 21.40 -

julia> zero_error = sin(z) - ( sin(x)*cos(y) + cos(x)*sin(y) )
-6.661338147750939e-16 (Error not available... maybe run uwerr)
julia> uwerr(zero_error)

julia> println(zero_error) # ADerrors keeps correlations!
-6.661338147750939e-16 +/- 1.7281005654554058e-16
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2.1 Dealing with correlated data

In many practical situations we have several variables with uncertainties that are not indepen-
dent. The covariance between these variables is given, and has to be taken into account in order to
perform error propagation correctly.

The method cobs(central_values, covariance, "TAG") allows the user to import cor-
related data as a vector of uwreal. One can operate on the elements of this vector naturally. Let us
see an example

Code (Julia)
julia> avg = [16.26, 0.12, -0.0038]; # Central values of three quantities

julia> Mcov = [0.478071 -0.176116 0.0135305
-0.176116 0.0696489 -0.00554431 # Covariance matrix
0.0135305 -0.00554431 0.000454180]; # between the quantities

julia> p = cobs(avg, Mcov, "Correlated data") # Vector with the 3 quantities
3-element Array{uwreal,1}:

16.26 (Error not available... maybe run uwerr)
0.12 (Error not available... maybe run uwerr)
-0.0038 (Error not available... maybe run uwerr)

julia> uwerr. (p);
julia> p
3-element Array{uwreal,l}:
16.26 +/- 0.6914267857119798
0.12 +/- 0.2639107803785211
-0.0038 +/- 0.021311499243366245
julia> cov(p) # Check that we reproduce the original covariance
3x3 Array{Float64,2}:
0.478071 -0.176116 0.0135305
-0.176116 0.0696489 -0.00554431
0.0135305 -0.00554431 0.00045418

julia> z = p[1] + p[2] + sin(p[3]); # Correlations are propagated
julia> uwerr(z)

julia> z # Note that error in z is smaller than error in p[1]!
16.37620000914533 +/- 0.4603415450741195

3. Iterative algorithms

In many practical situations our derived observables are defined by an iterative procedure.
This is the case of fit parameters. To determine them an iterative procedure is needed (i.e. the
minimization of the y? function). In these cases the derivatives needed for linear error propagation
are not straightforward to obtain.
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ADerrors. j1 uses automatic differentiation’ to perform exact linear error propagation. Errors
can be naively propagated even in iterative algorithms. As a concrete example, imagine that we are
interested in finding the root of a non-linear function

f(x) =acos(bsin(x)) —x. (1)

If the quantities a, b have uncertainties, these will propagate into an uncertainty in the root x*.
Since x* is defined by
x* = Find the root of f(x), )

what error propagation needs is to find the derivative of "Find the root of f(x)". The following
program performs the job using ADerrors. jl

Code (Julia)
julia> a = uwreal([1.34, 0.12], "Data 01") # a = 1.34 +/- 0.12

julia> b = uwreal([1.34, 0.12], "Data 02") # b = 1.34 +/- 0.12

julia> x0 = uwreal([0.5,0.5], "Initial position") # x0 = 0.5 +/- 0.5
julia> while true # This is just newton method
val = a*cos(b*sin(x0)) - x0
der = -a*b*sin(b*sin(x0))*cos(x0) - 1.0
x1 = x0 - val/der
if (abs(value(x0) - value(x1))<1.0E-10)
break
else
x0 = x1
end

end

julia> uwerr(x1)

julia> details(x1)

0.7838003744331717 +/- 0.056992589665847124
## Number of error sources: 3

## Number of MC ids : 0

## Contribution to error : Ensemble [%] [MC length]
# Data 02 63.25 -
# Data 01 36.75 -
# Initial position 0.00 -

Note that the while loop is just a straightforward application of Newton’s method. Automatic
differentiation approaches the problem of computing the derivative of "Find the root of f(x)" by
just computing the derivative of each expression of Newton’s algorithm. The position of the root
x* = 0.784(57), has an uncertainty that has been propagated from the uncertainties of the original
variables a, b.

We also assigned an error to the initial position where the iteration starts xo. This uncertainty
does not contribute to the final uncertainty of the position of the root. This is just a manifestation

In fact ADerrors.jl uses the Julia package ForwardDiff.jl[5] (https://github.com/JuliaDiff/
ForwardDiff. j1/) for this propose.
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of the fact that it does not matter what we choose as starting point for our Newton method, we will
end up finding the same root.

The techniques described in [4] allow to propagate errors in roots of non-linear function in a
more efficient way. Up to this point we have assumed that the root of the function is found with
machine precision, but the same techniques allow to propagate the numerical error of the algorithm
when this is not the case. An additional source of uncertainty would account for the inexactness of
the root finding procedure.

3.1 Error propagation in fits

One of the most common situations in data analysis is fitting data to a model. This is done by
finding the values of the parameters p; that minimize the function

Xz(pi;da), Pi (izlw--aNparm)s dy(a=1,...,Ngaa) - 3)

where d, are the data that carry uncertainties (i.e. Monte Carlo data from a lattice simulation, or
experimental data). This data might be correlated and the determination of the uncertainties in the
fit parameters has to take these correlations into account.

The previous section shows that ADerrors. jl can solve this problem by just propagating
errors in each step of the minimization routine (i.e. Levenberg-Marquardt, see an explicit example
in [4]). This is cumbersome because it would require to code this algorithm in such a way that
uwreal data types are accepted as input.

Reference [4] proposes an alternative based on the determination of the Hessian of the y?
function at its minimum. This allows ADerrors. j1 to rely on external (and efficient) libraries to
perform the minimization of the y2, and delegate the error propagation to the computation of the
Hessian at the minimum once it is found. This Hessian can be determined exactly using automatic
differentiation techniques, allowing exact error propagation in fit parameters.

Let us here show the main characteristics of data fitting using ADerrors. j1 (the complete
example is available in appendix A). First we minimize the y? with an efficient library

Code (Julia)
# Fit the data. We use LeastsquaresOptim to find the

# minimum of the chisq. It expects a function of the parameters
# alone that returns the vector of residuals.
julia> fit = optimize(xx -> lm(xx, value.(uwy)), [1.0,1.0],
LevenbergMarquardt(), autodiff = :forward)
julia> println("### Fit results (from LeastSquaresOptim)')
julia> println(fit)
### Fit results (from LeastSquaresOptim)
Results of Optimization Algorithm
* Algorithm: LevenbergMarquardt
* Minimizer: [1.19727262030669,-0.2938846629270645]
Sum of squares at Minimum: 19.590325
Iterations: 7
Convergence: true
|x - x'"| < 1.0e-08: false
= lfX) - £&D)| / [£fGx)] < 1.0e-08: true

¥ ¥ ¥

*
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Function Calls: 8
Gradient Calls: 7

¥ ¥ ¥

*

[g(x)| < 1.0e-08: false

Multiplication Calls: 21

Once the minimmum of the y? is found, ADerrors. j1 is able to determine the uncertainties

in the fit parameters. We get the fit parameters as a vector of uwreal from the routine

fit_error(csq, fitp_central_values, data)

where csq is the )(2( Pi,dg) function (as defined in equation (3)), fitp_central_values are the

central values of the fit parameters (i.e. the minimum of the y?), and data is the data whose errors

have to be propagated to the fit parameters.

Note that we obtain the fit parameters as an array of uwreal data. This means that we can

operate with fit parameters as if they were normal variables, and even use them as input for other

fits. We can also obtain the breakdown of the error in fit parameters (i.e. how much each original

source of uncertainty contributes to the uncertainty in fit parameters).

Code (Julia)

# Propagate errors with ADerrors. Use the central values

# of fit parameters (vector fit.minimizer) as input

julia> fitp, chiexp = fit_error(csq, fit.minimizer, uwy)

# Error analysis and details of fit parameters

julia> uwerr. (fitp)

julia> println("### Error analysis from ADerrors ")
julia> println("Fit results: chiA2 / chi’2_exp:

julia> for i in 1:length(fitp)
print("Fit Parameter "*string(i)*

details(fitp[il)

println(" ")
julia> end
println("### ")

### Error analysis from ADerrors

Fit results: chi*2 / chi?2_exp: 19.59032480880994 / 18.000000000000004

Fit Parameter 1 (exact value 1.2: 1.19727262030669 +/- 0.016888186595238174
## Number of error sources:

0

## Number of MC ids

## Contribution to error

#
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Figure 1: Monte Carlo histories of x> and x* for a random walk in the interval [—1, 1]. Clearly the two
histories are correlated.

4. Dealing with Monte Carlo data

Up to this point we have shown how ADerrors. j1 works with variables with uncertainties,
even when they are correlated. But the most common situation in Lattice QCD analysis is that data
to be analyzed come from a Monte Carlo simulation. In this case one can not reduce the variable
to a single value +/- error, because when several observables measured on the same ensemble
are combined the correlation has to be computed from the Monte Carlo history.

ADerrors. j1 deals with this case transparently: uwreal variables can also contain full Monte
Carlo histories. Let us first generate some Monte Carlo data (see figure 1)

Code (Julia)
julia> # Generate some correlated samples of the uniform[-1,1] distribution

julia> nsamp = 500

eta = randn(nsamp);
julia> x = Vector{Float64} (undef, nsamp);
julia> x[1] = 0.0;

julia> for i in 2:nsamp # This is just a random walk in [-1,1]
x[1] = x[i-1] + 0.2%etal[i]
if abs(x[i]) > 1.0
x[1] = x[i-1]
end
end
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The vector x[:] contains samples of the uniform distribution U[—1, 1]. We can determine the
expected values, for example, of E[X?] or E[X*]. Let us show how these Monte Carlo data can be
input as uwreal data types and check that the variables are correlated.

Code (Julia)
julia> xp2 = uwreal(x.22, "Random walk ensemble in [-1,1]")

0.3533602504472119 (Error not available... maybe run uwerr)

julia> xp4 = uwreal(x.*4, "Random walk ensemble in [-1,1]")
0.2197572322981959 (Error not available... maybe run uwerr)

julia> cov([xp2, xp4])

2x2 Array{Float64,2}:

0.0007523017604391568 0.0005551868103090107
0.0005551868103090107 0.00039631731910912886

Crucially the ensemble tag ("Random walk ensemble in [-1,1]" in this case) is the same for
both observables. This tells ADerrors. j1 that the measurements of both observables have been
performed in the same ensemble and makes it possible to determine the covariance of the data from
the Monte Carlo histories. We can determine functions of these expected values. Correlations are
extracted from the Monte Carlo histories and automatically taken into account. These correlations
are crucial to obtain correct error estimates of derived observables that depend on both variables
xp2, xp4, as the following example shows

Code (Julia)

julia> z = xp4d/xp2+2;
julia> uwerr(z)
julia> println(z)
1.7764683477541687 +/- 0.12751045462709376

5. Conclusions

In this proceedings contribution we have presented ADerrors.jl. Using Automatic differ-
entiation, this software package performs exact linear error propagation even in quantities that are
defined via iterative algorithms, like fit parameters. ADerrors. j1 keeps track of the origin of the
error in each variable, making it possible to obtain how much each ensemble has contributed to the
uncertainty in a particular variable.

The benefit of data analysis within this framework is that it is robust: if your analysis code
determines the central values correctly, the exact nature of automatic differentiation ensures that
errors are propagated correctly.

Some other features of the software include

» Exact linear error propagation in fit parameters, integrals and roots of non linear functions.
* Handles data from any number of ensembles (i.e. simulations with different parameters).

* Handles correlated data, with error estimates automatically including the correlations.
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* Support for replicas (i.e. several runs with the same simulation parameters).
¢ Irregular MC measurements are handled transparently.

We refer the interested readers to the original documentation of the package
https://gitlab.ift.uam-csic.es/alberto/aderrors.jl,

and the on-line tutorial
https://ific.uv.es/~alramos/docs/ADerrors/tutorial/.
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A. Error propagation in fits

Code (Julia)
using ADerrors, Distributions, LeastSquaresOptim, Printf # hide

# First generate the data:

# - We use 20 points

# - The model is 1.2%exp(-x%0.3)

# - The error in point (x,y) is 0.05/(x+y)
npt = 20

X = 2.0*rand(npt)

@. model (x) = 1.2%exp(-x*0.3)

dy = 0.05 ./ (x .+ model(x))

y = model(x) + dy .* randn(npt)

# Now the data x[:], y[:], dy[:] is input
# in ADerrors format:
uwy = Vector{uwreal}(undef, npt)
for i in 1:npt
xfmt = @sprintf("%6.4f",x[i])
uwy[i] = uwreal([y[i], dy[i]], "Data for point at x="*string(xfmt))
end
uwerr. (uwy)

# Show data:
println("### Data to fit ")
for i in 1:npt
println(" dt ", x[i], " ", uwy[i])
end
println("### ")

#H##H

# Fit
#A##H

10
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# First define the model as LeastSquaresOptim likes it.

# Also return the chisq for ADerrors.

# This routines defines the residuals and the chisq for some
# values of the x-coordinate and errors in y.

# Note: other parameters needed in the fit would have to

# be passed here.

function fit_definitions(x, dy)

# Imfit returns a vector. The sum of the squares is minimized
# by LeastSquaresOptim. These are basically the residuals
function 1mfit(prm, y)
res = Vector{eltype(prm)}(undef,length(y))
for i in 1:length(y)
res[i] = (y[i] - prm[1]*exp(prm[2]*x[i]1)) / dy[il
end

return res
end

# This is the usual chi*2 = sum of square of residuals
chisq(prm,data) = sum(lmfit(prm, data) .+ 2)

return Imfit, chisq
end

# Now get our Imfit and chi*2 functions given our values of x
# and our data in uwerr format uwy
Im, csq = fit_definitions(x, err.(uwy))

# Fit the data. LeastsquaresOptim expects a function of the

# parameters alone. We fix y = value. (uwy) in the call to

# optimize. Use [1.0,1.0] as initial guess of fit parameters

fit = optimize(xx -> Im(xx, value.(uwy)), [1.0,1.0],
LevenbergMarquardt(), autodiff = :forward)

println("### Fit results (from LeastSquaresOptim)")

println(fit)

println("### ")

# Propagate errors with ADerrors. Use the central values
# of fit parameters (vector fit.minimizer) as input
fitp, chiexp = fit_error(csq, fit.minimizer, uwy)

# Error analysis and details of fit parameters

uwerr. (fitp)
exact = [1.2, -0.3]

11



Automatic differentiation for error analysis Alberto Ramos

println("### Error analysis from ADerrors ")
println("Fit results: chiA2 / chi*2_exp: ", fit.ssr, " / ", chiexp)
for i in 1:length(fitp)

print("Fit Parameter "*string(i)*

" (exact value "*string(exact[i])*": ")

details(fitp[i])

println(" ")
end
printIn("### ")
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