
P
o
S
(
R
e
g
i
o
2
0
2
0
)
0
0
1

Lectures on Integrable Systems

Gleb Arutyunova,∗
aII. Institut für Theoretische Physik, Universität Hamburg,
Luruper Chaussee 149, 22761 Hamburg, Germany
Zentrum für Mathematische Physik, Universität Hamburg,
Bundesstrasse 55, 20146 Hamburg, Germany

E-mail: gleb.arutyunov@desy.de

In these lectures we cover the basic concepts of integrability including elements of the geometric
approach based on the hamiltonian reduction, the classical and quantum factorised scattering
theory and the coordinate Bethe Ansatz. The main features of the formalism are demonstrated on
the examples of the Lieb-Liniger delta-interaction model and multi-body systems of the Calogero-
Moser-Sutherland type.

RDP online workshop "Recent Advances in Mathematical Physics" - Regio2020,
5-6 December 2020
online

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:gleb.arutyunov@desy.de
https://pos.sissa.it/


P
o
S
(
R
e
g
i
o
2
0
2
0
)
0
0
1

Lectures on Integrable Systems Gleb Arutyunov

Contents

Preface 2

1 Liouville integrable systems 4
1.1 Dynamical systems in classical mechanics 4
1.2 Liouville theorem 11
1.3 Some examples of integrable systems 17
1.4 Lax representation and classical r-matrix 22

2 Phase spaces with symmetries and reduction 28
2.1 Lie-Poisson structure and coadjoint orbits 28
2.2 Hamiltonian reduction 31
2.3 Hyperbolic CMS model from reduction 37

3 Quantum integrability I: Discrete spectrum 41
3.1 Quantum trigonometric CMS model 41
3.2 Spectrum via Jack polynomials 44

4 Quantum integrability II: Scattering and Bethe Ansatz 47
4.1 Scattering in classical integrable models 47
4.2 Factorisation of scattering matrix 51
4.3 Bethe-Yang equations 57

5 Two-dimensional integrable PDEs 61
5.1 Soliton solutions 62
5.2 Zero curvature representation 67
5.3 Local integrals of motion 69

Preface

This is a mini course on integrable systems given at the Yerevan Physics Institute in February 2020.
The course is of an introductory nature and we tried to keep the presentation at the level assessable
by graduate students and postdocs.

We start the discussion with recalling the basic notions of classical mechanics including the
elements of Poisson and symplectic geometry. This creates an environment conducive to formulate
the Liouville theorem and outline its proof. For a mechanical system that satisfies the requirements
of the Liouville theorem, equations of motion can in principle be solved by means of a special
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procedure – the "quadrature", although a practical implementation of this procedure often meets
severe difficulties. We then give a few examples of finite-dimensional integrable models which
will serve throughout the lectures to demonstrate various methods and techniques aimed at finding
their solutions. These models include the SO(n) generalisation of Eulers’ top, the Calogero-
Moser-Sutherland (CMS) multi-body systems and the Lieb-Liniger model for the Bose gas. The
contemporary approach to integrable models relies on the Lax representation of the equations of
motion that provides an explicit construction of integrals of motion. The involutive property of
these integrals, hence the Liouville integrability, is guaranteed by a special form of the Poisson
bracket between the components of the Lax matrix. This brings forward the notion of the classical
r-matrix – a ubiquitous structure in the modern theory of integrable models. In some cases,
however, the Lax representation fails to generate the necessary number of integrals to render a
dynamical system Liouville integrable, as it happens, for instance, for Euler’s top. In this situation
the Lax representation and the procedure of constructing integrals can be generalised to include the
dependence on an auxiliary (spectral) parameter and in this way to overcome the above-mentioned
difficulty.

The next topic concerns with a geometric origin of integrable models. In many important
cases these models can be constructed by means of the hamiltonian reduction procedure. At the
same time, this procedure reduces the problem of solving the corresponding differential equations
of motion to a certain factorisation problem in Lie algebras and Lie groups that can be further
solved by means of algebraic operations. The starting point of this approach is a symplectic
manifold that carries a symplectic action of a Lie group G. One can then construct in a canonical
way a new (reduced) manifold, smaller in dimension, which, according to the Marsden-Weinstein
theorem, is also symplectic with the symplectic structure inherited from the parent manifold. A
dynamical system with a G-invariant hamiltonian on the parent manifold descends on the reduced
manifold where, under certain conditions, it defines an integrable model. To describe the reduction
procedure in full detail, we start from recalling the theory of coadjoint orbits, the Lie-Poisson
structure, symplectic action of a Lie group and the notion of moment map. This brings us to
the Marsden-Weinstein theorem and the discussion of the reduced symplectic structure. As an
illustration of the hamiltonian reduction procedure, we apply it to construct the hyperbolic CMS
model by reducing the cotangent bundle T∗G over the adjoint action of G and show how to solve
the equations of motion of this model by means of a special factorisation in G.

Further we proceed with quantum integrable systems. Given a classical integrable system with
independent involutive integrals Hk , its quantum-mechanical version should admit the quantum
counterparts Ĥk that all pairwise commute and, for this reason, share a common spectrum. The
multi-bodywave function can thus be searched as a common eigenstate of these operators. The study
ofmodelswith discrete or continuous spectrumof the Schrödinger operator proceeds differently. For
the discrete case, rather than to develop any general scheme, we consider a concrete model, namely,
the quantum version of the trigonometric CMS model. Analysing the action of the corresponding
hamiltonian on symmetric functions of exponentiated coordinates, we explain how to diagonalise
it on the basis of Jack polynomials. Further on, we discuss the quasi-particle interpretation of the
spectrum and its encoding by the corresponding Baxter polynomial.

The case of models with continuous spectrum is naturally related to the scattering theory.
We first embark on scattering in classical mechanics by restricting ourselves for simplicity reasons
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to repulsive, impenetrable potentials, rapidly decreasing at infinity. A new feature brought by
integrability in the scattering picture is the conservation of a set of asymptotic momenta, which
essentially means that scattering in integrable models is non-diffractive. In classical theory, the
main characteristic of scattering is the phase shift which shows how much a particle is advanced
with respect to a would be freely moving particle with the same asymptotic momentum. We then
discuss a general formula expressing the phase shift via the two-body potential and apply it to the
rational and trigonometric CMS models.

The conservation of the set of asymptotic momenta pertains to quantum integrable models
admitting scattering. Moreover, this conservation restricts the form of the asymptotics of the
wave function at large separation of neighbouring particles to be a linear combination of plane
waves constructed from the one and the same set of asymptotic momenta. This special form
of the asymptotic wave function is known as the Bethe wave function. The coefficients in the
expansion of the Bethe wave function over plane waves can be expressed via the two-body S-
matrix. Integrability then implies a factorisation of the multi-body scattering into a product of
two-body events and requires the two-body S-matrix to satisfy a compatibility condition known as
the quantum Yang-Baxter equation.

Although for most of integrable models the Bethe form of the wave function is only asymptotic,
this form can still be used to gain the knowledge of the spectrum when a model is compactified on a
large circle. This amounts to subjecting the Bethe wave function to periodicity conditions that result
into quantisation conditions for particle momenta known as Bethe equations. As an illustration, we
present the Bethe equations and the wave function for the cases of the Lieb-Liniger model of the
Bose gas and the rational CMS model. Actually, in the first case the Bethe wave function gives
an exact solution of the problem due to the extreme short-ranginess of the potential, while in the
second case the Bethe equations can be solved exactly and the corresponding spectrum appears to
coincide with the exact spectrum of the trigonometric CMS model found from solving the latter
model in terms of Jack polynomials.

In this course we decided to mainly talk about finite-dimensional integrable models. This
decision is based on our educative experience that once theBetheAnsatz approach for the asymptotic
spectrum of a quantum-mechanical integrable model is understood, it does not take much effort
to adapt it for the field-theoretic case. Notwithstanding, in the last part of the course we offer a
glimpse on the theory of two-dimensional integrable PDEs. Admittedly, this is a very vast subject
on its own, so to keep the size of our presentation within reasonable, we restricted ourselves to
stressing only some basic features, such as an existence of soliton solutions and the zero curvature
representation.

1. Liouville integrable systems

Traditionally, we start with a brief overview the basic notions of classical mechanics and a digression
on the Liouville theorem.

1.1 Dynamical systems in classical mechanics

There are two ways to describe dynamical systems in classical mechanics [1]. The first description
is known as the lagrangian formalism based on the principle of "stationary action". Consider a point
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particle with mass m which moves in an N-dimensional space with coordinates q = (q1, . . . , qN )
and a potential V (q). Newton’s equations which govern the particle’s trajectory are

mq̈i = − ∂V
∂qi

. (1.1)

These equations can be obtained by extremising the following action functional

S[q] =
∫ t2

t1

dt L(q, q̇, t) =
∫ t2

t1

dt
(

mq̇2

2
− V (q)

)
. (1.2)

According to the principle of stationary action, the actual trajectories of a dynamical system are the
ones that extremise S.

In general, we consider the lagrangian L as an arbitrary function of q, q̇ and time t. The
equations of motion are obtained by extremising the corresponding action

δS
δqi
=
∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0

and they are called the Euler-Lagrange equations. An assumption that L does not involve higher
order time derivatives implies that the corresponding dynamical system is fully determined by
specifying initial coordinates and velocities. Indeed, for a system with N degrees of freedom there
are N Euler-Lagrange equations of second order; the general solution will depend on 2N integration
constants, which are determined by specifying e.g. the initial coordinates and velocities. Note that
adding to the lagrangian a time derivative of a function which depends on coordinates and time
only: L → L + d

dtΛ(q, t) will not influence the Euler-Lagrange equations.
If L does not explicitly depend on t, then dL

dt =
∂L
∂q̇i q̈i + ∂L

∂qi q̇i. Substituting here ∂L
∂qi from the

Euler-Lagrange equations, we get

dL
dt
=
∂L
∂q̇i

q̈i +
d
dt

( ∂L
∂q̇i

)
q̇i =

d
dt

( ∂L
∂q̇i

q̇i
)
.

Therefore,

d
dt

(
∂L
∂q̇i

q̇i − L
)
= 0 ,

as a consequence of the equations of motion. This means that the quantity

H ≡ ∂L
∂q̇i

q̇i − L (1.3)

is conserved under the time evolution. For our particular example,

H = mq̇2 − L =
mq̇2

2
+ V (q) = E ,

where q̇2 ≡ q̇i q̇i. Thus, H is nothing else but the energy E of the system; the energy is conserved
due to the equations of motion. In general, dynamical quantities which remain unchanged under
the time evolution are called conservation laws or integrals of motion. Conservation of energy is
one of the main examples of conservation laws.
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Introduce the quantity called the canonical momentum

pi =
∂L
∂q̇i

, p = (p1, . . . , pN ) .

Obviously, for a particle pi = mq̇i. If V = 0, then ṗi = 0 by the Euler-Lagrange equations. Thus,
in the case of vanishing potential, the particle momentum is an integral of motion. This is another
example of a conservation law.

The second description of dynamical systems exploits the notion of the hamiltonian. The
energy of a system expressed via canonical coordinates and momenta is called the hamiltonian:

H (p, q) =
p2

2m
+ V (q) .

where p2 ≡ pipi. Given the hamiltonian, Newton’s equations can be rewritten as

q̇ j =
∂H
∂pj

, ṗj = − ∂H
∂q j

. (1.4)

These are equations of motion in the hamiltonian form or Hamilton’s equations. These equations
can also be obtained by means of the variational principle. The corresponding action has the form,
cf. (1.2) and (1.3),

S[p, q] =
∫ t2

t1

(
pi q̇i − H (p, q)

)
dt .

Varying this action with respect to p and q, considered as independent variables, one obtains
Hamilton’s equations.

Hamilton’s equations can be represented in the form of a single equation. Introduce two
2N-dimensional vectors

x = *,
q
p

+- , ∇H = *,
∂H
∂q j

∂H
∂p j

+-
and 2N × 2N matrix J:

J = *,
0 −1
1 0

+- , (1.5)

where 1 is the N × N unit matrix. Then (1.4) are concisely written as

ẋ = −J · ∇H , or J · ẋ = ∇H . (1.6)

The point x = (x1, . . . , x2N ) defines a state of a dynamical system in classical mechanics. The
set of all states forms the phase space P = {x} of the system which in the present case is the
2N-dimensional space with the euclidean metric. Solving Hamilton’s equations with given initial
conditions (p0, q0) representing a point in the phase space, we obtain a phase space curve

p ≡ p(t; p0, q0) , q ≡ q(t; p0, q0)

6
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passing through this point. As follows from the uniqueness theorem for ordinary differential
equations, there is a unique phase curve through every phase space point.

Let F(P ) be the space of smooth real-valued functions on P . It carries the structure of an
algebra with respect to the pointwise multiplication and its elements are called observables. Using
the matrix J, one can define on F(P ) the following Poisson bracket

{ f , g}(x) = Ji j∂i f ∂jg =
N∑

i=1

(
∂ f
∂pi

∂g

∂qi
− ∂ f
∂qi

∂g

∂pi

)

for any f , g ∈ F(P ). The Poisson bracket is a map F(P ) × F(P ) → F(P ) which has the
following properties

1) Linearity { f + αh, g} = { f , g} + α{h, g} ;
2) Skew-symmetry { f , g} = −{g, f } ;
3) Jacobi identity { f , {g, h}} + {g, {h, f }} + {h, { f , g}} = 0;

4) Leibniz rule { f , gh} = { f , g}h + g{ f , h}
for arbitrary functions f , g, h ∈ F(P ) and α ∈ R. The first three properties imply that the Poisson
bracket introduces on F(P ) the structure of an infinite-dimensional Lie algebra, while the Leibniz
rule expresses the compatibility of the bracket with multiplication in F(P ). Due to this rule, the
bracket is fully determined by its values on the coordinate functions xi for which {xi, x j } = Ji j or,
explicitly,

{qi, q j } = 0 , {pi, pj } = 0 , {pi, q j } = δ ji . (1.7)

Using the Poisson bracket, Hamilton’s equations for the coordinate functions can be rephrased in
the following concise form

ẋ j = {H, x j } .
As a consequence, evolution of any function f on the phase space is governed by the equation

ḟ = {H, f } .

Due to the skew-symmetry property of the Poisson bracket, this form of Hamilton’s equations makes
the conservation law for H obvious.

Poisson and symplectic manifolds. The properties 1) − 4) provide a general definition of the
Poisson bracket for an arbitrary smooth manifold P . Any Poisson bracket is described by a skew-
symmetric tensor J on P satisfying the Jacoby identity. In local coordinates this identity takes the
form

∑

(i,l,m)

Jik∂k Jlm = 0 ,

where the sum is over the cyclic permutation of indices. Amanifold endowed with a Poisson bracket
is called Poisson.

7
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For later we will need the notion of a Poisson map. For Poisson manifolds M and N , a
smooth map ϕ : M → N is called Poisson, if for any f , h ∈ F(N )

{ f , h}N (ϕ(x)) = {ϕ∗ f , ϕ∗h}M (x) , (1.8)

where ϕ∗ f (x) = f (ϕ(x)) and ϕ∗h(x) = h(ϕ(x)), x ∈ M , are pullbacks of f and h. Here { , }M
and { , }N stand for the Poisson brackets on the respective manifolds.

In general, the rank r of the matrix J is less than or equal to the dimension dim P of a manifold
and it might change from point to point. In the case when r = dim P at every point, the matrix J
is invertible and the corresponding Poisson bracket is called non-degenerate. This is only possible
if dim P is even. Indeed, since Jt = −J, one has

det J = det(−J) = (−1)dim P det J ,

so that (−1)dim P = 1 since det J , 0.
A manifold P supplied with a non-degenerate Poisson bracket is called symplectic. The

inverse of J with entries ωi j , where Jikωk j = δij , defines a skew-symmetric bilinear differential
2-form ω on P

ω = − 1
2ωi j (x) dxi ∧ dx j .

The Jacobi identity for J implies that this form is closed, i.e. dω = 0. To show this, we first note
that the Jacobi identity implies the following identity for J

Jik∂k Jlm + Jmk∂k Jil + Jlk∂k Jmi = 0 .

Then, we multiply both sides by ωi jωms and use Jikωk j = δ
i
j to obtain

−∂j Jmlωms − ωi j∂k Jil + ωi j Jlk∂k Jmiωms = 0 .

In the last relation we put derivatives on ω by using ∂s Jikωk j + Jik∂sωk j = 0. This gives

Jlm∂jωms − Jli∂sωi j − Jlm∂mω js = 0 .

It remains to multiply the last relation by ωkl and get

∂iω jk + ∂kωi j + ∂jωki = 0 ,

which is equivalent to
∂[iω jk] = 0 −→ dω = 0 .

A non-degenerate closed 2-form is called symplectic.
An example of a symplecticmanifold is the spaceR2N with the bracket (1.7). The corresponding

symplectic form is
ω = dpi ∧ dqi = d(pidqi) .

The 1-form α = pidqi is called the canonical 1-form.
Given a Poisson manifold, to any function f ∈ F(P ) one can associate a vector field ξ f

defined as

ξ f = { f , · } . (1.9)

8
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This field is called the hamiltonian vector field generated by f , and f is the generating or hamiltonian
function of ξ f . In local coordinates xi we have

ξ f = Ji j∂i f ∂j .

If we let ξ f = ξ jf ∂j , then the relation above gives

ξ
j
f
= Ji j∂i f , ∂j f = ωi jξ

i
f . (1.10)

The Jacobi identity for the Poisson bracket implies

ξ { f ,g } = [ξ f , ξg] . (1.11)

Hence, the map f → ξ f is a homomorphism1 F(P ) → X(P ), where X(P ) is the Lie algebra of
vector fields on P .

If P is symplectic, the definition (1.9) of the hamiltonian vector field can be formulated with
the help of the interior product iξ

iξfω + df = 0 , (1.12)

while the one-to-one correspondence between the Poisson bracket and the symplectic form ω can
be expressed as

ω(ξ f , ξh) = { f , h} = ξ f h = −ξh f . (1.13)

A function C is called a central or Casimir function if it Poisson-commutes with any element
of F(P ), that is

{C, f } = 0 , ∀ f ∈ F(P ) .

Casimir functions form a ring. If C is a Casimir function then it is annihilated by any hamiltonian
vector field ξ f , i.e. the latter lies everywhere tangent to the level set of the function C. On the
other hand, the hamiltonian vector field ξC vanishes as the one-form dC belongs to the kernel of
J: JdC = 0. Thus, the existence of non-constant Casimir functions means that r , dim P , i.e. the
Poisson bracket is degenerate.

Let {Ci }, i = 1, . . . ,m, be a complete set of independent Casimir functions. Consider a level
set Pc = {x ∈P : Ci (x) = ci }, where ci are constants. Any hamiltonian vector field is tangent to
Pc

ξ f Ci = { f ,Ci } = 0 , ∀ f ∈ F(P ) .

The same is true for the commutator of any two hamiltonian vector fields. Thus, by the Frobenius
theorem, the level set Pc is an integral submanifold in P . On Pc one can naturally define a
2-form ω

ωx (ξ f , ξg) = { f , g}(x) , x ∈Pc , (1.14)

1The map is from functions into vector fields, not vice versa, because functions which differ by a constant have, in
fact, the one and the same hamiltonian vector field.
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whereωx is the value ofω at x. The differential ofω can be computed with the help of the formula2

3dω(ξ f , ξg, ξh) = ξ fω(ξg, ξh) + ξgω(ξh, ξ f ) + ξhω(ξ f , ξg)

− ω([ξ f , ξg], ξh) − ω([ξh, ξ f ], ξg) − ω([ξg, ξh], ξ f ) .
(1.15)

Using (1.11), definition (1.14) and the Jacobi identity, we get dω = 0. Since the hamiltonian vector
field of any Casimir function vanishes, the formω is non-degenerate and, therefore, it is symplectic,
i.e. Pc is a symplectic manifold. Thus, the hamiltonian vector fields foliate P into integral
even-dimensional sub-manifolds called symplectic leaves, each of which inherits a symplectic form
from the original Poisson bracket on P .

Canonical transformations. Consider a smooth coordinate transformation x → x ′ = x ′(x). In
terms of these new coordinates Hamilton’s equations (1.6) take the form

dx ′i

dt
=
∂x ′i

∂xk
dxk

dt
=
∂x ′i

∂xk
Jkm(x)∇xmH =

∂x ′i

∂xk
∂x ′j

∂xm
Jkm(x)∇jH ′ ≡ J ′i j (x ′)∇jH ′ ,

where H ′(x ′) = H (x(x ′)) and

J ′i j (x ′) =
∂x ′i

∂xk
∂x ′j

∂xm
Jkm(x) . (1.16)

Hence, under coordinate transformations J transforms as a contravariant anti-symmetric tensor
field. Evidently, the equations for x ′ are of the hamiltonian form with the new hamiltonian H ′(x ′)
if and only if

∂x ′i

∂xk
∂x ′j

∂xm
Jkm(x) = Ji j (x ′) . (1.17)

Diffeomorphisms of the phase space which satisfy this condition are called canonical. In other
words, canonical transformations do not change the form of the Poisson (tensor) bracket. An
infinitesimal diffeomorphism x ′k = xk + ξk is generated by a vector field ξ. Under such a
diffeomorphism the form of an arbitrary contravariant tensor J varies according to (1.16),

(
Lξ J

) i j ≡ Ji j (x) − J ′i j (x) = ξk∂k Ji j − ∂kξi Jk j − ∂kξ j Jik . (1.18)

Here Lξ is the Lie derivative of J along the vector field ξ. It is now obvious that infinitesimal
canonical transformations correspond to those ξ for which Lξ J = 0.

If a manifold P is symplectic, then canonical transformations preserve the corresponding
symplectic form, that is

Lξω = 0 . (1.19)

For this reason, these transformations are also called symplectic or symplectomorphisms.

2The general formula for the differential of a differential form of order k is [2]

(k + 1)dω(ξ0, ξ1, . . . , ξk ) =
k∑

i=0
(−1)iξiω(ξ0, . . . , ξ̂i, . . . , ξk ) +

∑

0≤i≤ j≤k
(−1)i+jω([ξ, ξ j ], ξ0, . . . , ξ̂i, . . . , ξ̂ j, . . . ξk ) .

10
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An important class of canonical transformations is constituted by hamiltonian vector fields.
Consider a diffeomorphism generated by a hamiltonian vector field ξ f . From the definition (1.18)
of the Lie derivative we deduce that

(
Lξf J

) i j
= Jkm∂m f ∂k Ji j − ∂k (Jim∂m f )Jk j − ∂k (J jm∂m f )Jik

= −∂m f
∑

(i, j,m)

Jik∂k J jm = 0 ,

where the sum over the cyclic permutation of indices i, j, k vanishes due to the Jacobi identity. The
same result follows immediately from the Cartan formula

Lξfω = d(iξfω) + iξf (dω) = −d2 f = 0 ,

since ω is closed. Hence, any hamiltonian vector field generates a canonical transformation. If a
Poisson manifold is not symplectic, then hamiltonian vector fields generate symplectomorphisms
of the corresponding symplectic leaves.

Generally, a hamiltonian system is a triple (P, { , }, H): a phase space P , a Poisson structure
{ , } and a hamiltonian H . For any function f on the phase space, evolution equation is

df
dt
= {H, f } .

Since {H, H } = 0, the hamiltonian is automatically conserved. Therefore, the motion of the system
takes place on the submanifold of the phase space defined by the equation H = E where E is a fixed
constant (energy).

1.2 Liouville theorem

Among a large variety of physically relevant dynamical systems, those which admit an exact
solution turn out to be rather rare. Remarkably, however, for a special class of systems solutions
of the corresponding Hamilton’s equations can always be found by quadratures, i.e. by solving a
finite number of algebraic equations and computing a finite number of definite integrals. Dynamical
systems falling in this class are generally known as Liouville integrable systems because they satisfy
the assumptions of the Liouville theorem. The modern formulation of this theorem and its proof is
due to Arnold [3].

Arnold-Liouville theorem. Let P be a 2N-dimensional symplectic manifold. Suppose there exist
N functions f i ∈ F(P ) that are pairwise in involution with respect to the corresponding Poisson
bracket

{ f i, f j } = 0 , ∀i, j = 1, . . . , N .

Consider a common level set Pc of these functions,

Pc = {x ∈P : f i (x) = ci, i = 1, . . . , N } , (1.20)

where ci are constants. Assume that functions f i are independent on Pc, which means that the
1-forms df i are linearly independent at each point of Pc. Then

1) Pc is a smooth manifold invariant under the hamiltonian flow with H = H ( f i).

11
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2) If Pc is compact and connected then it is diffeomorphic to the N-dimensional torus

TN = {(ϕ1, . . . , ϕN ) mod 2π} .

3) The motion on Pc under H is conditionally periodic, that is,

dϕi
dt
= ωi (c) .

4) The equations of motion can be integrated by quadratures.

We only sketch the proof referring the reader to [3] for the full treatment. Consider the hamiltonian
vector fields ξi corresponding to the functions f i. Since ξi f j = 0, these vector fields are tangent
to Pc and their linear independence implies that they span the tangent space of Pc at any point.
Taking into account that the vector fields are in involution [ξi, ξ j] = 0, we conclude on the base of
the Frobenius theorem, that Pc is a maximal integral submanifold for the distribution spanned by
ξi. Clearly, the manifold Pc is invariant under the hamiltonian flow triggered by any H = H ( f i).
Varying the constants ci, we obtain a foliation of almost all3 P into invariant submanifolds.

Themain part of the proof consists in showing that wheneverPc is compact and connected, it is
a torus but not, for instance, a sphere. Let gtii , ti ∈ R, be a one-parametric group of diffeomorphisms
of P corresponding to the hamiltonian vector field ξi. The one-parametric groups corresponding
to different vector fields commute because the vector fields commute. As a result, one can define
the following action of the abelian group RN = {t1, . . . , tN } on Pc:

gt (x) = gt11 · · · gtNN (x) . (1.21)

Since Pc is an integral manifold for the distribution spanned by ξi, this action is transitive and,
therefore, Pc is a homogeneous space. Thus, Pc is diffeomorphic to the quotient RN/Γ, where Γ
is the isotropy subgroup of RN , i.e. a set of all points t ∈ RN for which gt (x) = x. The fact that
the fields ξi are independent at any point of Pc implies that the action (1.21) is locally free (none
of the group elements has a fixed point) and, therefore, Γ must be a discrete subgroup of RN . By
assumption Pc is compact and, therefore, Γ should be nothing else4 but an integral lattice ZN , so
that Pc is diffeomorphic to RN/ZN = TN . By the standard construction of a homogeneous space
as a coset, the vector fields ξi are mapped by this diffeomorphism to the translation-invariant vector
fields on TN . The angle variables {ϕi mod 2π} parametrising the torus provide a coordinate system
on Pc and they can be linearly5 expressed via t1, . . . , tN , namely,

ϕi (t) = Ajit j + ϕ
(0)
i mod 2π

for some constant matrix A that depends on the level set c. Since the evolution of ϕi in the direction
t j is driven by the vector ξ j = { f j, · }, Hamilton’s equation for ϕi is

dϕi
dt j
= { f j, ϕi }��Pc

= Aji .

3There could be values of ci for which the equations fi = ci cease to be independent.
4All discrete subgroups of RN correspond to integral lattices Zk , k ≤ N .
5This follows from RN /ZN = TN .
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From here we can find evolution of angle coordinates with respect to H = H ( f i)

dϕi
dt
= {H, ϕi }��Pc

=
∂H
∂ f j
{ f j, ϕi }��Pc

=
∂H
∂ f j

�����Pc

Aji ≡ ωi .

Thus, the uniform motion on the torus TN happens according to the law ϕi = ϕ
0
i + ωit where the

numbers ωi = ωi (c) are called frequencies. Now consider an equation

k1ω1 + . . . kNωN = 0, (1.22)

where k = (k1, . . . kN ) is a vector with integer components. If (1.22) has at least one non-zero
solution, the frequency set (ω1, . . . , ωN ) is called resonant, otherwise it is non-resonant. For a
non-resonant set of frequencies every trajectory is dense on TN and the corresponding motion
is called conditionally periodic. Evidently, if all the frequencies are commensurable (rationally
comparable), that is for any ωi and ω j there exist integers m and n such that

ωi m = ω j n ,

then the motion is periodic. This completes the discussion of the proof.
Note that the Arnold-Liouville theorem can be extended to the case whenPc is not necessarily

compact. With an additional assumption that the hamiltonian vector fields ξi are complete6 on Pc,
one can show that each connected component of Pc is diffeomorphic to Tk × RN−k .

Action-angle variables. The variables f i, ϕ j , i, j = 1, . . . , N featuring in the Arnold-Liouville
theorem are not in general canonical coordinates on P . However, the latter coordinates can be
constructed. First we note that in a small neighbourhood of Pc the symplectic manifold P is
diffeomorphic to the direct product D × TN , where D is a small domain in RN . It turns out that in
D×TN there exist coordinates Ii, θ j , where Ii ∈ D, θ j ∈ TN such that all f i are functions of Ij only
and that the symplectic structure has the canonical form ω = dIi ∧ dθi. An explicit construction of
the canonical variables Ii, θ j proceeds as follows.

It is clear that in the small neighbourhood of Pc the non-singular matrix of Poisson brackets
takes the form

*,
{ f i, f j } { f i, ϕ j }
{ϕi, f j } {ϕi, ϕ j }

+- ≡ *,
0 Ai j

−Aji Bi j

+- . (1.23)

The matrix A is constant on Pc and therefore Ai j = Ai j ( f ). We show that Bi j also depends on f i
only. Consider the Jacobi identity

{ fm, {ϕi, ϕ j }} + {ϕi, {ϕ j, fm}} + {ϕ j, { fm, ϕi }} = 0 . (1.24)

We have

{ϕi, {ϕ j, fm}} + {ϕ j, { fm, ϕi }} = −{ϕi, Amj ( f )} + {ϕ j, Ami ( f )}
= −∂Amj

∂ fk
{ϕi, fk } + ∂Ami

∂ fk
{ϕ j, fk } =

∂Amj

∂ fk
Aki − ∂Ami

∂ fk
Ak j , (1.25)

6A vector field is complete if any of its flow curves exists for all values of time.
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which is the expression independent of ϕ. Thus, the bracket

{ fm, {ϕi, ϕ j }} = { fm, Bi j } =
∂Bi j

∂ϕk
{ fm, ϕk } = Amk

∂Bi j

∂ϕk

is also ϕ-independent. Since the matrix A is invertible (otherwise the Poisson bracket (1.23) would
be degenerate), ∂Bi j

∂ϕk
also depends only on f which further implies that

Bi j = cki j ( f )ϕk + gi j ( f ) .

Single-valuedness of the bracket requires that cki j = 0 (otherwise the bracket at 0 and at 2π for any
of the angles will have different values although it corresponds to the one and the same value on
the torus), i.e. Bi j is a function of f . One of the consequences of this fact is that the Jacobi identity
(1.24) reduces to

∂Amj

∂ fk
Aki − ∂Ami

∂ fk
Ak j = 0 . (1.26)

Let us now perform the change of variables f i = f i (Ij ) such that {Ii, ϕ j } = δi j . For this we need to
solve a system of equations

Ai j = { f i, ϕ j } = ∂ f i
∂Ik
{Ik, ϕ j } = ∂ f i

∂Ik
δk j =

∂ f i
∂Ij

.

The compatibility condition for this system of equations is

∂Ai j

∂Is
=

∂ f i
∂Is∂Ij

=
∂ f i

∂Ij∂Is
=
∂Ais

∂Ij
.

Since ∂Ai j

∂Is
=

∂ fk
∂Is

∂Ai j

∂ fk
=

∂Ai j

∂ fk
Aks, this condition is equivalent to

∂Ai j

∂ fk
Aks =

∂Ais

∂ fk
Ak j ,

which is nothing else but the Jacobi identity (1.26) for functions f i, ϕ j, ϕs.

If the variables ϕi do not Poisson-commute, we should introduce new angle coordinates
θi mod 2π by making a shift ϕi = θi + hi (I), where functions hi are determined from the condition

Bi j = {hi, θ j } + {θi, h j } = ∂hi
∂Ij
− ∂h j

∂Ii
, (1.27)

The solubility condition for (1.27) is equivalent to the system of equations

∂Bi j

∂Ik
+
∂Bjk

∂Ii
+
∂Bki

∂Ij
= 0

which is the same as

∂Bi j

∂ fm
Amk +

∂Bjk

∂ fm
Ami +

∂Bki

∂ fm
Amj = 0 . (1.28)
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Since {{ϕi, ϕ j }, ϕk } = {Bi j, ϕk } = ∂Bi j

∂ fm
{ fm, ϕk } = ∂Bi j

∂ fm
Amk , one immediately recognizes that (1.28)

is just the Jacobi identity

{{ϕi, ϕ j }, ϕk } + {{ϕ j, ϕk }, ϕi } + {{ϕk, ϕi }, ϕ j } = 0 .

In this way we have constructed the action-angle variables Ii, ϕ j realising the canonical structure.
Note that even in the one-dimensional case action-angle variables are not uniquely defined.

Action variables Ij are defined up to additive constants and angle variables ϕ j can be shifted
θ j → θ + h j (I) by any functions h j of action variables which obey the conditions ∂hi

∂Ij
− ∂h j

∂Ii
= 0.

Example of an explicit construction of action-angle variables. Consider a Liouville integrable
system with the phase space R2N . According to the Liouville theorem, the motion occurs on a
N-dimensional torus TN being a common level of N commuting integrals. Let γj , 1 ≤ j ≤ N , be
the fundamental cycles of this torus depending continuously on the level {cj }. Consider a set of
equations f j (p, q) = cj and solve it for pj : pj = pj (c, q). Introduce the so-called action variables7

Ij (c) =
1

2π

∮

γj

pi (q, c)dqi =
1

2π

∮

γj

α , (1.29)

where α = pidqi is the canonical 1-form. Since cj are time-independent as they are values of the
integrals of motion, the variables Ij = Ij (c) are also time-independent. Moreover, assuming that
Ii are independent functions of cj , the map cj → Ij (c) given by (1.29) has an inverse. The angle
variables θ j are constructed by requiring that the transformation

(pj, qj ) → (Ij, θ j ) (1.30)

is canonical. To construct this canonical transformation, we will use the following generating
function depending on the "old" coordinates q and the "new" momenta I

S(I, q) =
∫ q

q0

pi (q′, I)dq′i ,

where an integration path lies on Pc. We have

pj =
∂S
∂qj

→ pj = pj (I, q). (1.31)

The angle variables are introduced as

θ j =
∂S
∂Ij

→ θ j = θ j (I, q) . (1.32)

Thus, for the differential of S we then have

dS =
∂S
∂qj

dqj +
∂S
∂Ij

dIj = pjdqj + θ jdIj .

Acting on this relation with d and taking into account that d2S = 0, we get

ω = dpj ∧ dqj = dIj ∧ dθ j ,

7The physical dimension of Ij coincide with the dimension of action that is the same as of angular momentum.
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which shows that Ii, θ j are canonical variables.
A subtle point concerns a dependence of S on the integration path. Consider a closed path:

from q0 to q and further from q to q0. If this path is contractable, then by Stokes’ theorem

∆S =
∮ q0

q0

α =

∫
dα =

∫
ω = 0 .

Here the vanishing of the integral of ω is due to the fact that ω vanishes on Pc

ω(ξi, ξ j ) = { f i, f j } = 0 .

If an integration path encloses a non-trivial cycle γ, the generation function undergoes a shift by an
integral of α over this cycle

∆γS =
∫

γ
α

that depends on Ij only. As a result, going over the cycle the variables θ j undergo a jump

∆γθ j =
∂

∂Ij

∫

γ
pi (q, I)dqi ,

i.e. θ j are multi-valued functions on Pc. In particular, ∆γi θ j = 2πδi j . This shows that θ j are
independent angle coordinates on the cycles. The same conclusion can be also drawn from the
following consideration

∮

γj

dθi =
∮

γj

d
∂S
∂Ii
=

∂

∂Ii

( ∮

γj

dS
)
=

∂

∂Ii

( ∮

γj

∂S
∂qk

dqk
)
=

∂

∂Ii

( ∮

γj

pkdqk
)
= 2πδi j ,

as along γj ∈ TN the variables Ij are constants and the function S(I, q) depends on q only.
In the variables I, θ the hamiltonian is a function of I and the equations of motion are

İj = −∂H
∂θ j
= 0 , θ̇ j =

∂H
∂Ij
≡ ω j (I) .

These equations are trivially solved, Ij (t) = I0
j , θ j (t) = θ

0
j +ω j (I0)t. On the way of constructing the

angle coordinates θ j , algebraic operations were used to find pj from f j (p, q) = cj and a computation
of a definite integral was implicitly done to obtain S(I, q). Finally, the inverse of (1.30) was
constructed by solving equations (1.32) for qj = qj (I, θ), which is also an algebraic operation. This
way of solving a Liouville integrable system is behind the term "quadrature".

A simple example of the above construction of the action-angle variables is provided by the
one-dimensional harmonic oscillator (of unit mass) which dynamics is driven by the hamiltonian

H =
1
2

(p2 + ω2q2) ,

and the canonical bracket {p, q} = 1. The reader can verify that the action-angle variables I, θ are
related to p, q as

q =

√
2I
ω

sin θ , p =
√

2Iω cos θ .
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1.3 Some examples of integrable systems

By now a vast number of dynamical systems that fit the framework of Liouville integrability is
known. Below we introduce a few such finite-dimensional systems which either were historically
among the first discovered or will serve for illustrative purpose of various methods and techniques
in the subsequent discussion. Our examples include spinning tops, multi-body systems of Calogero-
Moser-Sutherland type and the one-dimensional bose gas.

Generalised Euler’s top. The motion of rigid bodies is one of the classical problems of analytic
mechanics. Since 18th century a special attention was paid to the dynamics of spinning tops, where
the cases of Euler, Lagrange and Kowalevski give ubiquitous examples of completely integrable
systems. Here we restrict ourselves to the discussion of the generalised Euler top. This is an n-
dimensional rigid body without any particular symmetry that rotates in the absence of any external
forces around a fixed point that we choose to coincide with its center of mass. For case n = 3
corresponds to the conventional Euler top. To describe the dynamics, we introduce a matrix
g ∈ SO(n) that connects a rotating coordinate frame rigidly fixed to the body with a stationary
(inertial) frame. The lagrangian of the system is

L = −1
2 Tr

(
IΩ2) , Ω = −g−1ġ , (1.33)

whereI is a symmetric positive definite matrix (inertia tensor), which we can always take diagonal.
This lagrangian defines a left-invariant riemannian metric on SO(n) and, therefore, describes the
geodesic flow on SO(n) corresponding to this metric. The orthogonal matrix g comprises n(n−1)/2
degrees of freedom which play a role of generalised coordinates. Since gtg = 1, the matrix Ω is
skew-symmetric: Ωt = −Ω. Introducing a skew-symmetric matrix

Λ = 1
2
(
ΩI+IΩ

)
, (1.34)

the equations of motion for g can be written as

Λ̇ = [Ω,Λ] (1.35)

and they are known as the Euler-Arnold equations. Physically,Ω andΛ are the angular velocity and
the angular momentum in the body frame, while (1.35) are Euler’s equations describing evolution
of the angular momentum (or angular velocity) in the body frame. The invariance of the lagrangian
under constant left shifts g → hg, h ∈ SO(n), leads to the existence of the conserved Noether’s
charge J = gΛg−1, which is nothing else but the angular momentum in the stationary frame.
Although the lagrangian is invariant under left shifts, the Noether charge is not, it transforms as
J → hJh−1. The invariant integrals are constructed as Ik = TrJk = TrΛk .

The hamiltonian description is constructed by introducing the canonical momenta8

pji =
∂L
∂ġi j

= −1
2
(
g−1ġIg−1)

ji − 1
2
(
Ig−1ġg−1)

ji ,

In the matrix form p = 1
2 (ΩI+IΩ)g−1, so that

pg = Λ . (1.36)

8By definition we regard pji as the canonical momentum conjugate to the coordinate gi j .
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In deriving the canonical momentum, we have treated all the components of g as independent. In
the hamiltonian formulation the fact that g is an orthogonal matrix can be accounted by introducing
a constraint

C1 = 1 − gtg = 0 . (1.37)

Differentiating this constraint in time, we get Ċ1 = Ω
t +Ω. Thus, if we want to keep C1 = 0 for all

times, we have to require that Ω is a skew-symmetric matrix. Then, it follows from the definition
(1.34) that Λ is also skew-symmetric which yields due to (1.36) another hamiltonian constraint

C2 = (pg)t + pg = 0 . (1.38)

This constraint means that not all the components of the canonical momentum are independent,
rather from (1.38) together with (1.37) one gets that

pt = −gpg .

Note that the above relation also implies that (gp)t + gp = 0. No new constraints further arise; if
we differentiate C2 then the corresponding equation will be satisfied due to the equations of motion.

The hamiltonian is determined through the Legendre transform

H = pi j ġji − L = Tr(pġ) + 1
2 Tr

(
ΛΩ

)
= −1

2 Tr(pgΩ) ,

where we have used (1.36) and ġ = −gΩ. Further, the expression for Ω in terms of canonical
variables follows from (1.34) combined with (1.36)

2(pg)i j = (ΩI+IΩ)i j = (Ii +Ij )Ωi j ,

from where we find

Ωi j =
2(pg)i j
Ii +Ij

=
2Λi j

Ii +Ij
. (1.39)

Thus, the positive-definite hamiltonian is the following function of the canonical coordinates and
momenta

H = −1
2

(pg)i jΩji =
∑

i,j

(pg)2
i j

Ii +Ij
. (1.40)

Determination of the Poisson structure between the canonical variables is not straightforward.
Because of constraints, it is clear that the Poisson bracket between the coordinates and momenta
cannot be the canonical bracket {pi j, gkl } = δilδ jk , as the latter is incompatible with constraints
(1.37) and (1.38). An educated guess for the Poisson bracket compatible with constraints is

{gi j, gkl } = 0 ,
{pi j, gkl } = 1

2
(
δilδ jk − gkigjl) ,

{pi j, pkl } = 1
2
(
δik (gp)jl − δ jl (pg)ik

)
.

(1.41)
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One way to derive (1.41) from the canonical Poisson bracket {pi j, gkl } = δilδ jk is to use the Dirac
bracket construction known in the theory of constrained hamiltonian systems. Another way is to
note that (1.41) is equivalent to the canonical Poisson structure of the cotangent bundle T∗SO(n)
of the orthogonal group SO(n).

More generally, the cotangent bundle T∗G to a Lie group G is a manifold isomorphic to the
product T∗G ' G × g∗, where g∗ is the dual space to the Lie algebra g of G. If the space g is
supplied with a non-degenerate bilinear form, we can use this form to identify g∗ with g: g∗ ' g,
so that the cotangent bundle is isomorphic to G × g. As such, it can be parametrised by elements
(g, `), where g ∈ G and ` ∈ g. Matrix elements of the defining representations of G in GL(n,C)
and g in Mat(n,C) can be regarded as coordinate functions on the cotangent bundle; we denote
these coordinate functions as gi j and `i j , respectively, where i, j = 1, . . . , n. Finally, the cotangent
bundle of G is a Poisson manifold with the following Poisson bracket which we write as the set of
brackets between the coordinate functions

{g1, g2} = 0 ,
{`1, g2} = g2C12 ,

{`1, `2} = [C12, `1] = 1
2 [C12, `1 − `2] .

(1.42)

Here subscript 1 and 2 stands as a concise notation for the matrix indices i j and kl, respectively,
and C12 ∈ g ⊗ g is the so-called split Casimir. For any A ∈ g the spilt Casimir has the property that

A1 = Tr2C12 A2 , (1.43)

which in components means Ai j = Ci j,kl Alk , i.e. C is the identity operator in g.
Let us now specify the group G and the Poisson structure of its cotangent bundle to the case of

interest G = SO(n). For the orthogonal group the corresponding split Casimir is

Ci j,kl =
1
2 (δilδ jk − δikδ jl) .

It is skew-symmetric with respect to the interchange i ↔ j and separately with respect to k ↔ l
and it fulfils (1.43) for any skew-symmetric matrix A. For the Poisson structure (1.42) we then find
in components

{gi j, gkl } = 0 ,
{`i j, gkl } = gkmCi j,ml =

1
2
(
δilgk j − δ jlgki) ,

{`i j, `kl } = Cim,kl`mj − `imCmj,kl =
1
2 (δil`k j − δik`l j − δ jk`il + δ jl`ik ) .

(1.44)

Now one can verify that with an identification

` = pg = Λ (1.45)

the Poisson structure (1.41) for g and p precisely yields the structure (1.44). To prove this result,
upon evaluation of the brackets by the Leibniz rule one has to use the constraints (1.37) and (1.38).
This shows that a generalised Euler’s top can be understood as a dynamical system on the cotangent
bundle of the orthogonal group SO(n).
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Formulae (1.42) render the Poisson structure of T∗G in the left parametrisation. The right
parametrisation amounts to replacing ` with an element

m = g`g−1 .

The Poisson structure of the cotangent bundle in the right parametrisation is

{g1, g2} = 0 ,
{m1, g2} = C12g2 ,

{m1,m2} = −1
2 [C12,m1 −m2] .

(1.46)

Physically, m coincides with the angular momentum in the stationary frame: m = g(pg)g−1 =

gp = gΛg−1 = J. By using either (1.41) or (1.42), one can show that angular momenta in the
moving and stationary frames Poisson commute {`i j,mkl } = {Λi j, Jkl } = 0.

According to the last line in (1.44), the Poisson bracket between the components of Λ is closed

{Λi j,Λkl } = 1
2 (δilΛk j − δikΛl j − δk jΛil + δ jlΛik ) . (1.47)

The matrix Λ is skew-symmetric and the above relations coincide with the defining relations of the
Lie algebra so(n) for the case of general n. The hamiltonian can also be expressed via Λ only

H =
∑

i,j

Λ2
i j

Ii +Ij
. (1.48)

The Euler equations are hamiltonian with respect to the Poisson structure (1.47) and the hamiltonian
(1.48). An algebraic variety generated by the matrix elements Λi j of a skew-symmetric matrix Λ
coincides with the dual space g∗ to the Lie algebra g = so(n). In opposite to the Poisson structure
of the cotangent bundle, the bracket (1.47) is degenerate and Ck = TrΛ2k with k = 1, . . . , [n/2]
are its independent Casimir functions. As will be shown later, symplectic leaves of (1.47) coincide
with orbits of the coadjoint action of G in g∗. A phase trajectory of the top lies entirely on the orbit
specified by constant values of Ck . For n = 3, a coadjoint orbit, which is the phase space of the top,
has dimension 2 and, therefore, having the conserved hamiltonian is enough to render Euler’s top
Liouville integrable. For general n, in addition to Ck , there are 1

4 n(n − 1) − 1
2 [n/2] integrals that

guarantee the Liouville integrability of the top on a regular orbit of dimension 1
2 n(n − 1) − [n/2].

We present these integrals in slightly after.

Calogero-Moser-Sutherland (CMS)models. Inverting the harmonic potential of the one-dimensional
oscillator, one obtains a model with the hamiltonian

H =
p2

2m
+

γ2

mq2 .

The corresponding dynamical system can be thought of as describing radial motion of a free particle
on a two-dimensional plane with fixed angular momentum Lϕ attributed to the coupling constant
γ, the latter has the physical dimension of Planck’s constant. The potential gives rise to centrifugal
inverse-cube force. As any one-dimensional model with conserved energy, it can be elementary
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solved by quadratures. It is remarkable, however, that this model admits an integrable generalisation
to many degrees of freedom

I. H =
1

2m

N∑

i=1
p2
i +

γ2

2m

N∑

i,j

1
q2
i j

. (1.49)

The latter model describes N particles on a line interacting by the inverse-square potential. Here
qi j = qi−qj is the difference between coordinates of i’th and j’th particle on a line. This mechanical
system with n degrees of freedom is historically tied up with names of Calogero and Moser who
solved it first in the quantum and classical cases, respectively.

It has been shown by Sutherland that the model (1.49) can be further generalised to account
for a periodic boundary conditions. The corresponding potential is a trigonometric generalisation
of the one in (1.49) and the hamiltonian is

II. H =
1

2m

N∑

i=1
p2
i +

γ2

2m

N∑

i,j

1
4`2 sin2 1

2` qi j
. (1.50)

This is the Sutherland model. It can be viewed as an integrable deformation of (1.49) depending
on an additional length parameter `. Particles are confined here to a ring of circumference 2π`,
the decompactification limit ` → ∞ brings (1.50) back to the rational case (1.49). Sutherland used
this model to study thermodynamical properties of quantum fluid based on (1.49). The Sutherland
model has an interesting variant where the length ` is analytically continued to imaginary values
` → i`, giving rise to the hyperbolic model with the inverse-sinh-squared potential

III. H =
1

2m

N∑

i=1
p2
i +

γ2

2m

N∑

i,j

1
4`2 sinh2 1

2` qi j
. (1.51)

This time ` is naturally interpreted as an interaction length that sets the size of the region where
interactions between particles are sizeable. In the limit ` → ∞ one again recovers the long-range
model (1.49).

Evidently, the three models (1.49)-(1.51) are particular instances of the hamiltonian system
with a pairwise potential v(q) = v(−q)

H =
1

2m

N∑

i=1
p2
i +

N∑

i< j

v(qi j ) . (1.52)

One can therefore ask a question on the most general function v(q) for which the model defined by
the hamiltonian is integrable in the Liouville sense. The answer turns out to be

IV. v(q) =
γ2

m
℘(q) , (1.53)

where ℘(q) ≡ ℘(q |ω1, ω2) is the Weierstrass elliptic function with half-periods ω1 and ω2, where
we choose ω1,−iω2 to be any positive numbers, possibly infinite.9 This potential defines an elliptic
model fromwhich the previous models follow as degenerate cases when one or both periods become
infinite. Specifically, we have

9The ℘-function is homogeneous ℘(λq |λω1, λω2) = λ−2℘(q |ω1, ω2). With the assumption that ω1, ω2 has the
physical dimension of length, this property allows one to use in ℘(q) the dimensional coordinate q.
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Rational case: ω1 = ∞, ω2 = i∞,
℘(q) → 1

q2 .

Hyperbolic case: ω1 = ∞, ω2 = iπ`,

℘(q) → 1
4`2 sinh2 q

2`
+

1
12`2 .

Trigonometric case: ω1 = π`, ω2 = i∞,

℘(q) → 1
4`2 sin2 q

2`
− 1

12`2 .

The models with rational, trigonometric, hyperbolic and elliptic potentials are marked as I, II, III
and IV, respectively. In the following we abbreviate the dynamical systems I − IV as the CMS
(Calogero-Moser-Sutherland) models.10 These CMS models are related to the root system of the
Lie algebra AN−1 and can be generalised to other root systems [4].

Bose gas with delta-interaction. The so-called delta-interaction model is defined by the hamilto-
nian

H =
1

2m

N∑

i=1
p2
i + κ

∑

i< j

δ(qi − qj ) , (1.54)

where κ is a real coupling constant. For κ > 0 the interaction is repulsive and for κ < 0 it is
attractive. A solution of the corresponding quantum-mechanical problem for the repulsive case was
first obtained in the case of bosons by Lieb and Liniger, while the general case of distinguishable
particles was solved by C.N. Yang. Expanded in many directions, this model serves as a prototype
example of applications of the Bethe Ansatz techniques.

1.4 Lax representation and classical r-matrix

Lax representation. Let L and M be two square matrices whose entries are functions on a phase
space. Consider the following matrix equation

L̇ = [M, L] , (1.55)

where as usual dot stands for the time derivative. If equation (1.55) is identically satisfied as a
consequence of hamiltonian equations for a given dynamical system, then this dynamical system is
said to admit a Lax representation (1.55) with L being the corresponding Lax matrix. Such a pair
of matrices L and M is often referred to as Lax pair.

The importance of the Lax representation is that, once found, it allows for a simple and universal
construction of an extended set of conserved quantities as spectral invariants of the corresponding
Lax matrix. Indeed, consider

Hk = Tr Lk .

10We follow the classification of the CMS systems by [4] but for our presentation purposes interchanged II↔ III.
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for k ∈ Z. We have

Ḣk = kTr(Lk−1 L̇) = kTr(Lk−1[M, L]) = Tr[M, Lk] = 0 ,

i.e. the Hk are time-independent as a consequence of the hamiltonian equations implying (1.55).
In fact, the matrix equation (1.55) can be readily solved as

L(t) = g(t)L(0)g(t)−1 ,

where the invertible matrix g(t) is determined from the equation

M (t) = ġg−1 .

By Newton’s identities, integrals Hk are functions of the eigenvalues of the matrix L and vice versa.
Since the eigenvalues of L are preserved in time, evolution of such a dynamical system is called
isospectral.

It should be emphasised that a Lax pair, if it exists, is not uniquely defined. First, the one and
the same dynamical system might admit Lax pairs represented by n× n matrices of different size n.
Second, there is a freedom related to transformations of the type

L′ = gLg−1 , M ′ = gMg−1 + ġg−1 , (1.56)

where g is an arbitrary invertible matrix possibly depending on dynamical variables. If here L, M
is a Lax pair, then L′, M ′ is another one for the same dynamical system. Indeed,

L̇′ = ġLg−1 + g[M, L]g−1 − gLg−1ġg−1 = [gMg−1 + ġg−1, gLg−1] ≡ [M ′, L′] .

Note that M undergoes a gauge-type transformation. Lastly, for a fixed L shifting M by any
polynomial of L will not influence the Lax equation (1.55).

We illustrate the concept of Lax representation on the example of the CMS models I, II and III.
I. Lax representation for the rational CMS model can be chosen as

L =
N∑

i=1
piEii − iγ

N∑

i,j

1
qi j

Ei j , M = iγ
N∑

i,j

1
q2
i j

(Eii − Ei j ) . (1.57)

Using the canonical structure (1.7) and the hamiltonian11 (1.49), one can verify the validity of the
Lax representation, namely, that

L̇ = {H, L} = [M, L] . (1.58)

The first two spectral invariants of L produce the total momentum P and the Hamiltonian 2H ≡ H2.
Starting from TrL3 one obtaines new integrals of motion that cannot be expressed via P and H .

11For simplicity we put in this section m = 1 and ` = 1.

23



P
o
S
(
R
e
g
i
o
2
0
2
0
)
0
0
1

Lectures on Integrable Systems Gleb Arutyunov

More explicitly,

H1 = TrL =
∑

i

pi

H2 = TrL2 =
∑

i

p2
i + γ

2
∑

i,j

1
q2
i j

H3 = TrL3 =
∑

i

p3
i + 3γ2

∑

i,j

pi
q2
i j

H4 = TrL4 =
∑

i

p4
i + 4γ2

∑

i,j

p2
i +

1
2 pipj

q2
i j

+ γ4
∑

i,j

1
q4
i j

+ 2γ4
∑

i,j,k

1
q2
i jq

2
jk

. . . . . .

(1.59)

As γ → 0 the integrals behave as Hk ∼ ∑
j pkj , which gives a reason to call the basis of conserved

quantities constituted by these integrals the power sum basis.
The integrals Hk have the distinguished feature of being local. Thismeans that in the asymptotic

limit of large time, they take an additive form with respect to the number of particles

Hk ∼
∑

j

pkj ,

where pj is an asymptotic momentum of j’s particle. Exhibiting a commutative family of operators
is not exciting by itself, but the fact that these operators are local is truly remarkable. For instance,
powers of the hamiltonian, although commuting, are not local operators. Thus, the existence of
local commuting operators adds to the notion of (quantum) integrability.

II. Lax representation for the trigonometric CMS model. It is convenient to introduce Qi = eiqi . In
terms of this variable the Lax pair reads

L =
N∑

i=1
piEii + γ

N∑

i,j

Qj

Qi j
Ei j , M = −iγ

N∑

i,j

QiQj

Q 2
i j

(Eii − Ei j ) . (1.60)

One can verify that (1.58) holds for the canonical structure (1.7) and the hamiltonian (1.50). In
terms of Q -variables the hamiltonian is

H =
1
2

∑

i

p2
i −

γ2

2

∑

i,j

QiQj

Q 2
i j

.

Computing the spectral invariants of L, we generate the conservation laws for this model

H1 = TrL =
∑

i

pi

H2 = TrL2 =
∑

i

p2
i − γ2

∑

i,j

QiQj

Q 2
i j

H3 = TrL3 =
∑

i

p3
i − 3γ2

∑

i,j

QiQj

Q 2
i j

pi

H4 = TrL4 =
∑

i

p4
i − γ2

∑

i,j

QiQj

Q 2
i j

(
4p2

i + 2pipj

)
+ γ4

∑

i,j

Q 2
i Q 2

j

Q 4
i j

+ 2γ4
∑

i,j,k

QiQ 2
j Qk

Q 2
i jQ

2
jk

. . . . . .

(1.61)
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III. Lax representation for the hyperbolic CMS model. This time we introduce Qi = eqi . The Lax
pair reads

L =
N∑

i=1
piEii − iγ

N∑

i,j

Qj

Qi j
Ei j , M = iγ

N∑

i,j

QiQj

Q 2
i j

(Eii − Ei j ) . (1.62)

Again, (1.58) holds for the canonical structure (1.7) and the hamiltonian (1.51), the latter takes in
terms of Q -variables the form

H =
1
2

∑

i

p2
i +

γ2

2

∑

i,j

QiQj

Q 2
i j

.

Computing the spectral invariants of L, we generate the conservation laws for this model

H1 = TrL =
∑

i

pi

H2 = TrL2 =
∑

i

p2
i + γ

2
∑

i,j

QiQj

Q 2
i j

H3 = TrL3 =
∑

i

p3
i + 3γ2

∑

i,j

QiQj

Q 2
i j

pi

H4 = TrL4 =
∑

i

p4
i + γ

2
∑

i,j

QiQj

Q 2
i j

(
4p2

i + 2pipj

)
+ γ4

∑

i,j

Q 2
i Q 2

j

Q 4
i j

+ 2γ4
∑

i,j,k

QiQ 2
j Qk

Q 2
i jQ

2
jk

. . . . . .

(1.63)

The formulae for integrals of the trigonometric and hyperbolic models share the features of their
rational cousins. Restoring the length parameter ` by rescaling qi → qi/` pi → `pi, which is a
canonical transformation, followed by L → L/` and M → M/`2, one can see that in the limit
` → ∞ the Lax pairs for both models II and III go into the Lax pair of the model I, and the same
is for integrals of motion.

Babelon-Viallet theorem and dynamical r-matrix. The Lax representation makes no reference
to a Poisson structure. Spectral invariants of the Lax matrix are integrals of motion but without
specifying this structure it is impossible to conclude anything about their involutive property.

A relation of integrals to the underlying Poisson structure gets established due to the Babelon-
Viallet theorem [5], see also [6]. According to this theorem, having the involutive property of the
eigenvalues of L ∈ Matn(C) is equivalent to the existence of a function r on the phase space with
values in Matn(C)⊗2 such that the Poisson bracket between the entries of L is

{L1, L2} = [r12, L1] − [r21, L2] . (1.64)

As an explicit matrix, r12 ≡ (ri j,kl), where i, j = 1, . . . , n correspond to the first matrix space
and k, l = 1, . . . , n to the second one. The matrices on the right hand side of (1.64) are multiplied
according to the standard rule of matrix multiplication. Thus, being written in components, formula
(1.64) looks like

{Li j, Lkl } = ris,klLs j − Lisrs j,kl − rks,i jLsl + Lksrsl,i j , ∀ i, j, k, l ∈ 1, . . . , n ,
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wherewe have separated the indices belonging two differentmatrix spaces of r12 by comma. Clearly,
the use of the concise notation as in (1.64) saves a sufficient amount of work and space.

The matrix r is called dynamical r-matrix, which reflects the possibility for this matrix to
depend on the phase space variables. Note that the bracket (1.64) is manifestly skew-symmetric.
To obtain (1.64), we assume that L is diagonalisable,

L = SΛS−1 ,

where Λ is a diagonal matrix whose entries Λi are prospective integrals of motion. Assuming that
the phase space is equipped with a Poisson structure such that {Λi,Λj } = 0 for any i, j, we compute

{L1, L2} = {S1Λ1S−1
1 , S2Λ2S−1

2 } = k12L1L2 + L1L2k12 − L1k12L2 − L2k12L1

− q21L2 + q12L1 − L1q12 + L2q21 ,

where we introduced the notation

k12 = {S1, S2}S−1
1 S−1

2 , q12 = S2{S1,Λ2}S−1
1 S−1

2 , q21 = S1{S2,Λ1}S−1
1 S−1

2 .

From the explicit form of k12 one sees that k21 = −k12. This allows one to further rearrange the
bracket as

{L1, L2} = [k12L2 − L2k12, L1] + [q12, L1] − [q21, L2]
= 1

2 [[k12, L2], L1] − 1
2 [[k21, L1], L2] + [q12, L1] − [q21, L2] .

The last expression has precisely the form (1.64), where the corresponding r-matrix is

r12 = q12 +
1
2 [k12, L2] .

Note that r12 is not assumed to have any specific symmetry properties. Also, it is not uniquely
defined: one can readily see that a shift r12 → r12 + [σ12, L2], where σ12 = σ21, does not influence
the right hand side of (1.64). Also, the bracket (1.64) does not change its form under symmetry
transformations (1.56), although the r-matrix does.

Concerning the Jacobi identity for (1.64), it yields the following constraint on the r-matrix

[L1, [r12, r13] + [r12, r23] + [r32, r13] + {L2, r13} − {L3, r12}] + cycl. perm = 0 .

In the case when r is independent of the dynamical variables, the last equation simplifies to

[L1, [r12, r13] + [r12, r23] + [r32, r13]] + cycl. perm = 0 .

In particular, the Jacobi identity will be satisfied if r obeys the following equation

[r12, r13] + [r12, r23] + [r32, r13] = 0 . (1.65)

Another important point about the Poisson structure (1.64) is that it yields theLax representation
for evolution equations driven by any of the hamiltonians Hk = TrLk , k ∈ Z. Indeed, from (1.64)
one gets

dL
dtk
= {Hk, L} = [Mk, L] , (1.66)
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where Mk = −kTr1(r21Lk−1
1 ) and tk is the time evolution parameter along the hamiltonian flow

triggered by Hk .

Lax representation with spectral parameter. The number of integrals constructed as eigenvalues
of the Lax matrix L cannot exceed the rank of L. For systems with a substantially large number of
degrees of freedom andwith a Lax representation by low-rankmatrices, the Liouville integrability is
not guaranteed by the Lax method. For instance, for the generalised Euler top, we can immediately
identify the Lax representation by taking L = Λ and M = Ω, see (1.35). However, the spectral
invariants TrLk yield only the Casimir functions and are not enough to declare the model to be
integrable. Remarkably, there is a way to extend the original approach based on (1.55) such that it
will produce enough integrals for Liouville integrability.

Introduce a variable λ ∈ C, called the spectral parameter, and consider two square matrices
L(λ) and M (λ) that are functions of the phase space variables and λ. A given dynamical system
admits a Lax representation with the spectral parameter, if there exist L(λ) and M (λ) such that the
matrix equation

L̇(λ) = [M (λ), L(λ)] (1.67)

is satisfied for any value of λ as the consequence of the equations of motion for this system. For a
system which admits a Lax representation with the spectral parameter, the quantities

Ik (λ) = TrLk (λ) (1.68)

are conserved for any λ. Assuming Ik (λ) are rational functions of λ, the coefficients of their
Laurent expansion around each pole are integrals of motion. The determinant det(L(λ) − ζ1),
which generates Ik (λ) in the power series expansion over the parameter ζ , defines the classical
spectral curve

det(L(λ) − ζ1) = 0 , ζ, λ ∈ C . (1.69)

This procedure yields an extended set of integrals. Their involutive property can be established
with a generalisation of the Babelon-Viallet theorem: the spectral invariants of L(λ) will Poisson
commute at different values of λ, iff there exists a dynamical r-matrix r (λ, µ) such that the Poisson
bracket between the components of L(λ) and L(µ) is of the form

{L1(λ), L2(µ)} = [r12(λ, µ), L1(λ)] − [r21(µ, λ), L2(µ)] . (1.70)

As an example, consider Euler’s top. The spectral dependent Lax representation is given by
Manakov’s pair

L(λ) = I2 + 1
λΛ , M (λ) = 2λI+Ω . (1.71)

To check (1.67), consider

1
λ Λ̇ = [M (λ), L(λ)] = [Ω,I2] + 2[I,Λ] + 1

λ [Ω,Λ].

Vanishing of the constant term here is automatic due to the definition (1.34) of Λ, while vanishing
of 1/λ-terms is equivalent to the Euler equations. Further, by applying the Poisson brackets (1.47),
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we compute the left hand side of (1.70) and find that it can be written in the r-matrix form with the
following non-dynamical r-matrix

r (λ, µ) = −1
2

∑

i j

Ei j ⊗ Eji

λ − µ − 1
2

∑

i j

Ei j ⊗ Ei j

λ + µ
.

It is convenient to define integrals polynomial in λ

Ik (λ) = λkTrL(λ)k = Tr
(
Λ + λI2)k =

k∑

s=0
Ik,sλs ,

where k = 2, . . . , n. Coefficients Ik,s are independent integrals and the existence of the r-matrix
guarantees that they are in involution. Since Λ is skew-symmetric and J2 is symmetric, Ik,s is
non-zero only if s has the same parity as k. This observation allows one to compute the total
number N (n) of integrals

N (n) =
n∑

k=2

[ k
2

]
=

1
2

[ n
2

]
+

n(n − 1)
4

,

from which [n/2] integrals Ik,0 with k even are Casimirs of (1.47). The number N (n) − [n/2] of
the remaining integrals is exactly half the dimension of a regular coadjoint orbit of SO(n).

2. Phase spaces with symmetries and reduction

Here we describe a way of constructing integrable models by using the method of hamiltonian
reduction. This method is based on the Marsden-Weinstein theorem which allows one to construct
a symplectic manifold from another one by reducing the latter over its symmetry. We start from a
general definition of the Lie-Poisson structure, one example of which has been already accounted
in the theory of Euler’s top.

2.1 Lie-Poisson structure and coadjoint orbits

Let G be a Lie group and g be its Lie algebra. Let also g∗ be the dual of g with the natural pairing
〈 ·, · 〉 between g and g∗. Consider the algebra of smooth functions F(g∗) on g∗. If f ∈ F(g∗) then
its gradient ∇ f ∈ g is defined as

〈m,∇ f (`)〉 = lim
t→0

f (` + tm) − f (`)
t

, `,m ∈ g∗ ,

The Kirillov-Kostant Poisson bracket is defined as

{ f , h}(`) = 〈`, [∇ f (`),∇h(`)]〉 (2.1)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold. One often
refers to (2.1) as to the Lie-Poisson structure. Let us fix a basis {ei } in g, so that

[ei, e j] = f ki jek ,
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where f ki j are structure constants. Denote by ei a dual basis in g∗ defined as 〈ei, e j〉 = δij . Then
` = `iei and `i are coordinates on g∗. In these coordinates

∇ f = ei
∂ f
∂`i

, (2.2)

so that ∇`i = ei. Therefore, the bracket between the coordinates is

{`i, ` j } = 〈`, [ei, e j]〉 = f ki j `k . (2.3)

It is clear that the Kirillov-Kostant bracket is degenerate as is seen, for instance, from the vanishing
of the corresponding Poisson tensor at ` = 0. There is a geometric characterisation of symplectic
leaves of the bracket (2.1) as orbits of the coadjoint representation of G [7]. Below we recall the
corresponding construction.

Coadjoint orbits. Denote by Adg and adX the adjoint representations of G and g, where g ∈ G
and X ∈ g. Assuming G is a matrix Lie group, one has

AdgX = gXg−1 , adXY = [X,Y ] , Y ∈ g .

Then the coadjoint action (representation) of G in the dual space g∗ is defined as

Ad∗g`(X ) = `(Adg−1 X ) = `(g−1Xg) ,

for any X ∈ g. The derivative map of this action at the group unity g = e defines the coadjoint
action (representation) of g in g∗:

ad∗X` =
d
dt

Ad∗
etX

`
���t=0

,

so that

ad∗X`(Y ) = −`(adXY ) = −`([X,Y ]) . (2.4)

Under the coadjoint action the space g∗ splits into orbits. Consider an orbit

On = {Ad∗gn, g ∈ G}

that passes through a point n ∈ g∗ and denote by Gn ⊂ G the stabiliser (stability group) of this
point. Evidently, the orbit can be modelled as a homogenous space G/Gn ≈ On. Let us show that
the tangent space to On at n is then naturally identified with the factor-space g/gn, where gn is the
Lie algebra of Gn

gn = {X ∈ g : ad∗Xn = 0} .

Any element X ∈ g gives rise to a vector field on g∗ tangent to the orbits of the coadjoint action.
For f ∈ F(g∗) this vector field is defined as

ξX f (`) =
d
dt

f
(
Ad∗

e−tX `
) ���t=0

= −〈ad∗X`,∇ f (`)〉 . (2.5)
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From here we find that

ξX = −〈ad∗X`, ei〉
∂

∂`i
= 〈`, [X, ei]〉 ∂

∂`i
= 〈e j, [X, ei]〉 ` j ∂

∂`i
. (2.6)

These fields satisfy the relation

[ξX, ξY ] = ξ[X,Y] , (2.7)

implying that the map X → ξX is a homomorphism g→ X(g∗). As follows from (2.5), for X ∈ gn
the field ξX vanishes at the point n and vice versa. The tangent space to On at n is spanned by
non-vanishing vector fields and is, therefore, isomorphic to g/gn.

The fields ξX are hamiltonian, they are generated by the following linear functions of `

fX (`) = 〈`, X〉 .

Indeed, ∇ fX (`) = X and, therefore,

{ fX, h}(`) = 〈`, [X,∇h(`)]〉 = −〈ad∗X`,∇h(`)〉 = ξXh(`) , ∀h ∈ F(g∗) .

G-invariant symplectic structure on coadjoint orbits. According to (1.14), one can define on
On a closed 2-form

ω` (ξX, ξY ) = { fX, fY }(`) = 〈`, [X,Y ]〉 = f [X,Y](`) , ` ∈ On , (2.8)

where ξX and ξY are hamiltonian vector fields (2.6) tangent to the orbit at the point `. The fact
that ω is G-invariant can be demonstrated in different ways. One way is to note that the fields
ξX representing the group action on F(g∗) are hamiltonian and, according to the general theory,
must preserve the Poisson bracket and the 2-form (79). Another way to be now explained appeals
to a direct computation. The group acts on points of the orbit by ` → `′ = Ad∗g`. Under this
action the vector fields transform: ξX → ξ ′X . For a fixed g ∈ G the point `′ has coordinates
`′j = 〈Ad∗g`, e j〉 = 〈`,Adg−1 e j〉, so that the Jacobi matrix is

∂`′i
∂` j
=
∂`k
∂` j
〈ek,Adg−1 ei〉 = 〈e j,Adg−1 ei〉 .

The field ξ ′X can be then found by using the standard transformation rule for vector fields

ξ ′X (`′) = 〈`, [X, e j]〉
∂`′i
∂` j

∂

∂`′i
= 〈`, [X, e j]〉 〈e j,Adg−1 ei〉 ∂

∂`′i
= 〈`, [X,Adg−1 ei]〉 ∂

∂`′i
,

where we have used that |e j〉〈e j | is the identity operator on g. Therefore,

ξ ′X (`′) = 〈`′, [AdgX, ei]〉 ∂

∂`′i
= ξAdgX (`′) ,

where in the last step we used the comparison with (2.6). It remains to evaluate

ω`′ (ξ ′X, ξ
′
Y ) = ω`′ (ξAdgX, ξAdgY ) = 〈Ad∗g`, [AdgX,AdgY ]〉 = 〈`, [X,Y ]〉 = ω` (ξX, ξY ) ,
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which shows that ω is invariant under G.
From (2.8) it follows that at the point n giving rise to the orbit On one has

ωn(ξX, ξY ) = 〈n, [X,Y ]〉 . (2.9)

The right hand side of this formula is a bilinear skew-symmetric form on g which kernel coincides
with gn. This form is non-degenerate on the factor space g/gn that is isomorphic to the tangent
space to the orbit at n. Since the action of G on On is transitive and preserves ω, this form is
non-degenerate at any point of On and, therefore, any coadjoint orbit is a symplectic leaf of the
Kirillov-Kostant bracket. As a consequence, any coadjoint orbit is even-dimensional. Functions on
g∗ invariant under the coadjoint action are obviously constant on any coadjoint orbit and, therefore,
they are Casimir functions of the Kirillov-Kostant bracket.12

2.2 Hamiltonian reduction

Let P be a symplectic manifold. The hamiltonian or symplectic reduction is a procedure of
obtaining a new symplectic manifold Pr from P by means of reduction over the symplectic action
of a Lie group G.

Given on P a dynamical system with a hamiltonian H invariant under a continuous symmetry
group, Noether’s theorem gives rise to integrals of motion corresponding to this symmetry. Reduc-
tion consists in eliminating some degrees of freedom by setting these integrals to constant values.
Initial dynamics restricted to the corresponding locus of the phase space is typically degenerate
and to obtain a well-defined dynamical system, one has to factor out some additional degrees of
freedom. Integrability of the reduced system, if present, is conventionally inherited from some
simple and solvable dynamics on the initial phase space. Here we explain the basics of hamiltonian
reduction traditionally founded on the geometric notion of the moment map. Further subtle details
together with a number of important applications can be found in [1, 8].

Hamiltonian action of a Lie group. Let P be a connected manifold. Suppose P is endowed
with a smooth action of a Lie group G: G ×P →P . Denote by g · x the image of x ∈ P under
the action of g. Then for any g1, g2 from G we have (g1g2) · x = g1 · (g2 · x) and e · x = x, where e
is the identity element. This action induces a representation of G in the space F(P ):

T (g) f (x) = f (g−1 · x) , f ∈ F(P ). (2.10)

Any element X of the Lie algebra g of G gives rise to the vector field ξX according to

(
ξX f

)
(x) =

d
dt

f
(
e−tX · x) ���t=0

. (2.11)

Since T (g) is a representation, the map X → ξX is a Lie algebra homomorphism g → X(P )
meaning that

[ξX, ξY ] = ξ[X,Y] . (2.12)

12Any function f ∈ F(g) invariant under coadjoint action has the gradient ∇ f for which 〈`, [X,∇ f ]〉 = 0 for any
X ∈ g, as follows from (2.5).
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An example of the group action is provided by the coadjoint representation of G in P = g∗. For
this example formula (2.11) turns into (2.5).

LetP be a symplecticmanifoldwith the 2-formω. The action ofG onP is called hamiltonian,
if for any X ∈ g the corresponding vector field ξX is hamiltonian, i.e. there exists a single-valued
function fX ∈ F(P ) such that

iξXω + dfX = 0 . (2.13)

Since ξX is hamiltonian, it generates a symplectic transformation. In other words, a hamiltonian
action of G on P is symplectic. Vice versa, at least locally, symplectic transformations by G are
hamiltonian [3].

The hamiltonian function fX is determined by (2.13) up to an arbitrary constant which can
always be chosen such that the dependence of fX on X is linear.13 This choice is not however
unique as one can shift fX → fX + 〈`, X〉 for any x-independent ` ∈ g∗ without violating neither
(2.13) nor linearity in X . Fixing then a concrete linear map X → fX , we will find that it satisfies
the following relation

f [X,Y] = { fX, fY } + c(X,Y ) . (2.14)

Here c is a bilinear skew-symmetric 2-form on g that is a constant on P , i.e. its value does not
depend on a point x ∈P . To prove (2.14), we write (2.13) for a Lie algebra element [X,Y ]

iξ[X,Y ]ω + df [X,Y] = 0 .

Since ξ[X,Y] = [ξX, ξY ], we have i[ξX,ξY ]ω + df [X,Y] = 0. But a general property of hamiltonian
fields is that [ξ f , ξg] = ξ { f ,g } and since ξX ≡ ξ fX 14, we will have that [ξX, ξY ] = ξ { fX, fY } and,
therefore,

iξ{ fX , fY }ω + df [X,Y] = 0 (2.15)

On the other hand, by the definition of the hamiltonian vector field

iξ{ fX , fY }ω + d{ fX, fY } = 0. (2.16)

Comparing (2.15) with (2.16), we conclude that d{ fX, fY } = df [X,Y], implying (2.14). The Jacobi
identity for the Poisson bracket yields for c an equation

c([X,Y ], Z ) + c([Y, Z], X ) + c([Z, X],Y ) = 0 ,

meaning that c is a 2-cocycle: g ∧ g → R defining an element of the second cohomology class
H2(g,R). A trivial cocycle (coboundary) corresponds to c(X,Y ) = 〈`, [X,Y ]〉 for some ` ∈ g∗ and
it can always be eliminated from (2.14) by redefining the hamiltonian function as fX → fX −〈`, X〉.

13 Linearity of the map X → fX is achieved by first picking particular hamiltonian functions for all elements in a basis
of g and extending to all X ∈ g by linearity.

14This identification is applied precisely after the linear map X → fX gets fixed.
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Moment map. For any x ∈ P a correspondence X → fX (x) defines a linear functional on g

which can be identified with some µ ∈ g∗. Explicitly,

〈µ(x), X〉 = fX (x) . (2.17)

This relation gives rise to a map µ from the symplectic manifold into the dual space to the Lie
algebra

µ : P → g∗ , (2.18)

known as the moment map.
We further assume that the hamiltonian action of G on a connected manifold P is such that

the hamiltonian functions can be chosen to satisfy

{ fX, fY } = f [X,Y] . (2.19)

In particular, this is always the case when the second cohomology class is trivial. Formula (2.19)
means that the linear map X → fX is a homomorphism of the Lie algebra g into the Lie algebra of
hamiltonian functions. For the freedom fX → fX + 〈`, X〉 to be compatible with (2.19), the map
` : g → R must be a 1-cocycle, i.e. it must satisfy the condition 〈`, [X,Y ]〉 = 0 for any X,Y ∈ g.
Consequently, the space of such `’s coincides the first cohomology class H1(g,R) ' (

g/[g, g]
)∗.

For semi-simple Lie algebras [g, g] = g and therefore H1(g,R) = 0, which implies that the map
X → fX obeying (2.19) is uniquely defined. From (2.17) it is then follows that the moment map
(2.18) is also uniquely defined for this case.

According to its definition, the quantity 〈µ, X〉 is a Poisson algebra generator of the hamiltonian
group action

{〈µ, X〉, · } = ξX .
From linearity of the Poisson bracket, for any function f on the phase space one has

〈{µ, f }, X〉 = ξX f ∀X ∈ g . (2.20)

Evidently, functions invariant under the group action Poisson-commute with the g∗-valued function
µ(x). Below we point out the two most important and interrelated properties of the moment map.

First, condition (2.19) implies that the moment map µ : P → g∗ is a Poisson map provided
the algebra of functions on g∗ is equipped with the Kirillov-Kostant bracket. The left hand side of
(2.19) can be written in the form

{ fX, fY }(x) = 〈X ⊗ Y, {µ ⊗, µ}(x)〉 . (2.21)

Here the symbol of tensor product within the Poisson bracket indicates that its arguments are
regarded as elements of two different vector spaces. For the right hand side of (2.19) one gets

f [X,Y](x) = 〈[X,Y ], µ(x)〉 = 〈X ⊗ Y, 〈µ(x), [ei, e j]〉 ei ∧ e j〉 . (2.22)

By comparing we conclude that

{µ ⊗, µ}(x) = 〈µ(x), [ei, e j]〉 ei ∧ e j , (2.23)
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where the bracket in the left hand side is evaluated on P . This shows that if we endow g∗ with the
following Poisson bracket

{µ ⊗, µ}g∗ = 〈µ, [ei, e j]〉 ei ∧ e j , (2.24)

then (2.18) is a Poisson map. Obviously, (2.24) is the Kirillov-Kostant bracket (2.3) for the
coordinates µi on g∗ amalgamated into

µ = µiei . (2.25)

Second, (2.19) implies that the moment map is G-equivariant. This has the following meaning.
Let g(t) be a one-parametric subgroup corresponding to X ∈ g. According to the definition (2.11),
a shift x → g(t)−1 · x is generated by the vector field ξX . This vector field acts on the moment map
as follows

〈ξX µ(x),Y 〉 = ξX fY (x) = { fX, fY }(x) = f [X,Y](x) = 〈µ(x), [X,Y ]〉 ,

from which we deduce that

ξX µ(x) = −ad∗X µ(x) . (2.26)

The global version of this action is µ(g−1 · x) = Ad∗
g−1 µ(x) or, upon replacing g → g−1,

µ(g · x) = Ad∗gµ(x) . (2.27)

Thus, the moment map intertwines the group action on P with the coadjoint action so that an orbit
of G in P is mapped under µ into a coadjoint orbit in g∗.

To summarise, the moment map (2.18) is a G-equivariant mapping of Poisson manifolds.

Marsden-Weinstein theorem. Let P be a symplectic manifold with the 2-form ω. For a fixed
m ∈ g∗ denote by Gm ⊂ G its stabiliser under the coadjoint action. Consider the inverse image
µ−1(m) ⊂ P . This subspace is invariant under the action of Gm. Indeed, for g ∈ Gm and
x ∈ µ−1(m) one has

µ(g · x) = Ad∗gµ(x) = Ad∗gm = m,

that is g · x ∈ µ−1(m). Thus, one can define the quotient

Pr = µ
−1(m)/Gm . (2.28)

This quotient is usually referred to as the reduced phase space, see Fig. 2. If m is chosen such
that the action of Gm on µ−1(m) is free and proper, then according to the known theorem Pr

is a smooth manifold. The Marsden-Weinstein theorem [8] is a statement that Pr is a symplectic
manifold with the symplectic structure inherited from ω on P .

To get an idea of the proof of the Marsden-Weinstein theorem, let us evaluate ω on the vector
field ξi ≡ ξei of a basis element ei and an arbitrary vector field η. We have

ω(ξi, η) = −dµi (η) = −ηµi ,
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Phase space

algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX, Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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Constrained surfaceOrbits of stabilizer

The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Gm

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .
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Orbits of

Since � is non-degenerate

TxpM´1pmqqK “
´
TxpG ¨ xqK

¯K “ TxpG ¨ xq ,

i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.

G

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.

Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface. The hamiltonian vector fields �e�̄ corresponding to
functions M�̄ are in a sense “perpendicular” to the constrained manifold.

The Dirac bracket

tf, huD “ tf, hu ´ tf, M�̄uM´1
�̄�̄

tM�̄ , hu (1.35)

g˚

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
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and x P M´1pmq one has
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g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .

It is clear that the Kirillov-Kostant bracket is degenerate as is seen, for instance, from
the fact that the corresponding Poisson tensor vanishes at � “ 0. There is a beautiful
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Phase space

algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Mpxq “ m

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .
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Orbits of

Since � is non-degenerate

TxpM´1pmqqK “
´
TxpG ¨ xqK

¯K “ TxpG ¨ xq ,

i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.

G

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.

Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q ,

where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq. Thus, Pred is a symplectic manifold, it is
therefore even-dimensional and its dimension is

dim Pred “ dim P ´ dim g ´ dim gm .

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface. The hamiltonian vector fields �e�̄ corresponding to
functions M�̄ are in a sense “perpendicular” to the constrained manifold.

The Dirac bracket

tf, huD “ tf, hu ´ tf, M�̄uM´1
�̄�̄

tM�̄ , hu (1.35)

g˚

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
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Figure 3.1: Geometric picture of hamiltonian reduction.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define a quotient

Pred “ µ´1pmq{Gm . (3.29)

This quotient is usually referred to as the reduced phase space, see Fig. 3.1. If the value m is
such that the action of Gm on µ´1pmq is free and proper2, then according to the well-known
theorem Pred is a smooth manifold.

µpxq “ m (3.30)

A theorem due to Marsden and Weinstein [37] asserts that Pred is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, evaluate
� on a vector field �i of ei and an arbitrary vector field � tangent to P. We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i is hamiltonian. If we now assume that � is tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

2 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).
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As to the second constraint, the general solution for T is given by the product T “ hT0 of

an arbitrary h P F# and a particular solution T0 P F of the second equation, which we can

choose, for instance, as

T0pqq “

¨
˚̊
˚̊
˚̋

b1p´qq b2p´qq ´ 1 b3p´qq ´ 1 . . . bN p´qq ´ 1

0 1 0 0

0 0 1 0

...

. . .
...

0 0 0 . . . 1

˛
‹‹‹‹‹‚

. (3.272)

Thus, S “ µ´1pnq is a set

p�, gq � T˚G ,
(3.273)

where

� “ hT0pqqQT0pqq´1h´1, g “ hT0pqqW pqqP´1T0pqq´1h´1 . (3.274)

Here Q, P are unrestricted (modulo Weyl ordering) and h is an arbitrary element of F#.

The reduced phase space Pred is then obtained in the standard fashion by taking a quotient

of the level set of the moment map over the action of its stability subgroup coinciding in

the present case with F#

Pred “ S{F# .
(3.275)

Naturally, pQ, P q can be regarded as coordinates on Pred. Since these coordinates inherit

from T˚G the canonical Poisson bracket (3.252), the reduced phase space is symplectic.

The formal counting of its dimension goes as follows. The adjoint action (3.62) of G on

T˚G is not e�ective, as GL1 acts trivially. Formula (3.30) then gives

dim Pred “ dimpT˚Gq ´ dimpGLnn{GL1q ´ dimpF#q “ 2N2 ´ pN2 ´ 1q ´ pN ´ 1q2 “ 2N .

This completes the construction of the reduced phase space.

Dirac bracket and Frobenius invariants. Now we discuss the procedure of computing

the Poisson structure on the reduced space by using the concept of the Dirac bracket and

show that this naturally leads to a construction of the Lax pair from our geometric context.

Let f# be a Lie algebra of F# and let d denote a one-dimensional subalgebra corresponding

to GL1. The Lie algebra g can be expanded into a direct sum of vector spaces

g “ f# ‘ c ‘ a ‘ d “ f ‘ a ‘ d . (3.276)

Here a and c are two abelian N ´ 1-dimensional Lie subalgebras. In this decomposition the

summand f# ‘ c coincides with the Frobenius Lie algebra f. We note for completeness that

f ‘ d is isomorphic to the maximal parabolic subalgebra p of g

p “
"ˆ

a �xt

0 A

˙
P GLn

*
. (3.277)

where �x is N ´ 1-dimensional vector, a P C and A P GLN´1.
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Second, (2.18) implies that the moment map is G-equivariant. This has the following
meaning. Let gptq be a one-parametric subgroup corresponding to X P g. According to the
definition (2.12), a shift x Ñ gptq´1 ¨ x is generated by the vector field �X . This vector field
acts on the moment map as follows

x�Xµpxq, Y y “ �XfY pxq “ tfX , fY upxq “ frX,Y spxq “ xµpxq, rX, Y sy ,

from which we deduce that

�Xµpxq “ ´adX̊µpxq . (2.25)

The global version of this action is µpg´1 ¨ xq “ Ad˚
g´1µpxq or, upon replacing g Ñ g´1,

µpg ¨ xq “ Adg̊µpxq . (2.26)

Thus, the moment map intertwines the group action on P with the coadjoint action so that
an orbit of G in P is mapped under µ into a coadjoint orbit in g˚.

To summarise, we have shown that the moment map (2.17) is an equivariant mapping
of Poisson manifolds. In 2.1.6 we return to the discussion of the moment map but from a
di�erent angle.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define the quotient

Pr “ µ´1pmq{Gm . (2.27)

This quotient is usually referred to as the reduced phase space, see Fig. 2.1. If m is chosen
such that the action of Gm on µ´1pmq is free and proper5, then according to the well-known
theorem Pr is a smooth manifold.

A theorem due to Marsden and Weinstein [2] asserts that Pr is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, let us
evaluate � on the vector field �i “ �ei of a basis element ei and an arbitrary vector field �.
We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i has the hamiltonian function µipxq, see (2.24). If we further assume that � is
tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

Since �i span at x P µ´1pmq the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set µ´1pmq

Txpµ´1pmqq “ TxpG ¨ xqK .

5 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).

79

Figure 1: Geometric picture of reduction.

Marsden-Weinstein theorem. Let P be a symplectic manifold with the 2-form !. For a fixed
m 2 g⇤ denote by Gm ⇢ G its stabiliser under the coadjoint action. Consider the inverse image
µ�1(m) ⇢ P . This subspace is invariant under the action of Gm. Indeed, for g 2 Gm and
x 2 µ�1(m) one has

µ(g · x) = Ad⇤gµ(x) = Ad⇤gm = m,

that is g · x 2 µ�1(m). Thus, one can define the quotient

Pr = µ
�1(m)/Gm . (100)

This quotient is usually referred to as the reduced phase space, see Fig. 1. If m is chosen such
that the action of Gm on µ�1(m) is free and proper, then according to the known theorem Pr is a
smooth manifold. The Marsden-Weinstein theorem is a statement that Pr is a symplectic manifold
with the symplectic structure inherited from ! on P .

g⇤

To get an idea of the proof of the Marsden-Weinstein theorem, let us evaluate ! on the vector
field ⇠i ⌘ ⇠ei of a basis element ei and an arbitrary vector field ⌘. We have

!(⇠i, ⌘) = �dµi (⌘) = �⌘µi ,

because ⇠i has µi (x) as its hamiltonian function, see (97). If we further assume that ⌘ is tangent to
µ�1(m), then

!x (⇠i, ⌘) = �⌘µi ���µ(x)=m
= 0 .

Since ⇠i span at x 2 µ�1(m) the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set S⌘ µ�1(m)

TxS= Tx (G · x)? .

Since ! is non-degenerate,

TxS
? =

�
Tx (G · x)?

�?
= Tx (G · x) ,
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algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
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For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
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and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,
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Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
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fp� ` tmq ´ fp�q
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the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.
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Since � is non-degenerate

TxpM´1pmqqK “
´
TxpG ¨ xqK

¯K “ TxpG ¨ xq ,

i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.

G

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.

Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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tf, huD “ tf, hu ´ tf, M�̄uM´1
�̄�̄

tM�̄ , hu (1.35)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .

It is clear that the Kirillov-Kostant bracket is degenerate as is seen, for instance, from
the fact that the corresponding Poisson tensor vanishes at � “ 0. There is a beautiful
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Phase space

algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.
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Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.
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Make contact with Noether.
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Figure 3.1: Geometric picture of hamiltonian reduction.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define a quotient

Pred “ µ´1pmq{Gm . (3.29)

This quotient is usually referred to as the reduced phase space, see Fig. 3.1. If the value m is
such that the action of Gm on µ´1pmq is free and proper2, then according to the well-known
theorem Pred is a smooth manifold.

µpxq “ m (3.30)

A theorem due to Marsden and Weinstein [37] asserts that Pred is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, evaluate
� on a vector field �i of ei and an arbitrary vector field � tangent to P. We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i is hamiltonian. If we now assume that � is tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

2 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).

73

As to the second constraint, the general solution for T is given by the product T “ hT0 of

an arbitrary h P F# and a particular solution T0 P F of the second equation, which we can

choose, for instance, as

T0pqq “

¨
˚̊
˚̊
˚̋

b1p´qq b2p´qq ´ 1 b3p´qq ´ 1 . . . bN p´qq ´ 1

0 1 0 0

0 0 1 0

...

. . .
...

0 0 0 . . . 1

˛
‹‹‹‹‹‚

. (3.272)

Thus, S “ µ´1pnq is a set

p�, gq � T˚G ,
(3.273)

where

� “ hT0pqqQT0pqq´1h´1, g “ hT0pqqW pqqP´1T0pqq´1h´1 . (3.274)

Here Q, P are unrestricted (modulo Weyl ordering) and h is an arbitrary element of F#.

The reduced phase space Pred is then obtained in the standard fashion by taking a quotient

of the level set of the moment map over the action of its stability subgroup coinciding in

the present case with F#

Pred “ S{F# .
(3.275)

Naturally, pQ, P q can be regarded as coordinates on Pred. Since these coordinates inherit

from T˚G the canonical Poisson bracket (3.252), the reduced phase space is symplectic.

The formal counting of its dimension goes as follows. The adjoint action (3.62) of G on

T˚G is not e�ective, as GL1 acts trivially. Formula (3.30) then gives

dim Pred “ dimpT˚Gq ´ dimpGLnn{GL1q ´ dimpF#q “ 2N2 ´ pN2 ´ 1q ´ pN ´ 1q2 “ 2N .

This completes the construction of the reduced phase space.

Dirac bracket and Frobenius invariants. Now we discuss the procedure of computing

the Poisson structure on the reduced space by using the concept of the Dirac bracket and

show that this naturally leads to a construction of the Lax pair from our geometric context.

Let f# be a Lie algebra of F# and let d denote a one-dimensional subalgebra corresponding

to GL1. The Lie algebra g can be expanded into a direct sum of vector spaces

g “ f# ‘ c ‘ a ‘ d “ f ‘ a ‘ d . (3.276)

Here a and c are two abelian N ´ 1-dimensional Lie subalgebras. In this decomposition the

summand f# ‘ c coincides with the Frobenius Lie algebra f. We note for completeness that

f ‘ d is isomorphic to the maximal parabolic subalgebra p of g

p “
"ˆ

a �xt

0 A

˙
P GLn

*
. (3.277)

where �x is N ´ 1-dimensional vector, a P C and A P GLN´1.
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Second, (2.18) implies that the moment map is G-equivariant. This has the following
meaning. Let gptq be a one-parametric subgroup corresponding to X P g. According to the
definition (2.12), a shift x Ñ gptq´1 ¨ x is generated by the vector field �X . This vector field
acts on the moment map as follows

x�Xµpxq, Y y “ �XfY pxq “ tfX , fY upxq “ frX,Y spxq “ xµpxq, rX, Y sy ,

from which we deduce that

�Xµpxq “ ´adX̊µpxq . (2.25)

The global version of this action is µpg´1 ¨ xq “ Ad˚
g´1µpxq or, upon replacing g Ñ g´1,

µpg ¨ xq “ Adg̊µpxq . (2.26)

Thus, the moment map intertwines the group action on P with the coadjoint action so that
an orbit of G in P is mapped under µ into a coadjoint orbit in g˚.

To summarise, we have shown that the moment map (2.17) is an equivariant mapping
of Poisson manifolds. In 2.1.6 we return to the discussion of the moment map but from a
di�erent angle.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define the quotient

Pr “ µ´1pmq{Gm . (2.27)

This quotient is usually referred to as the reduced phase space, see Fig. 2.1. If m is chosen
such that the action of Gm on µ´1pmq is free and proper5, then according to the well-known
theorem Pr is a smooth manifold.

A theorem due to Marsden and Weinstein [2] asserts that Pr is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, let us
evaluate � on the vector field �i “ �ei of a basis element ei and an arbitrary vector field �.
We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i has the hamiltonian function µipxq, see (2.24). If we further assume that � is
tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

Since �i span at x P µ´1pmq the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set µ´1pmq

Txpµ´1pmqq “ TxpG ¨ xqK .

5 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).

79

Figure 1: Geometric picture of reduction.

Marsden-Weinstein theorem. Let P be a symplectic manifold with the 2-form !. For a fixed
m 2 g⇤ denote by Gm ⇢ G its stabiliser under the coadjoint action. Consider the inverse image
µ�1(m) ⇢ P . This subspace is invariant under the action of Gm. Indeed, for g 2 Gm and
x 2 µ�1(m) one has

µ(g · x) = Ad⇤gµ(x) = Ad⇤gm = m,

that is g · x 2 µ�1(m). Thus, one can define the quotient

Pr = µ
�1(m)/Gm . (100)

This quotient is usually referred to as the reduced phase space, see Fig. 1. If m is chosen such
that the action of Gm on µ�1(m) is free and proper, then according to the known theorem Pr is a
smooth manifold. The Marsden-Weinstein theorem is a statement that Pr is a symplectic manifold
with the symplectic structure inherited from ! on P .

m

To get an idea of the proof of the Marsden-Weinstein theorem, let us evaluate ! on the vector
field ⇠i ⌘ ⇠ei of a basis element ei and an arbitrary vector field ⌘. We have

!(⇠i, ⌘) = �dµi (⌘) = �⌘µi ,

because ⇠i has µi (x) as its hamiltonian function, see (97). If we further assume that ⌘ is tangent to
µ�1(m), then

!x (⇠i, ⌘) = �⌘µi ���µ(x)=m
= 0 .

Since ⇠i span at x 2 µ�1(m) the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set S⌘ µ�1(m)

TxS= Tx (G · x)? .

Since ! is non-degenerate,

TxS
? =

�
Tx (G · x)?

�?
= Tx (G · x) ,
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algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Gm

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .
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Since � is non-degenerate

TxpM´1pmqqK “
´
TxpG ¨ xqK

¯K “ TxpG ¨ xq ,

i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.

G

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.

Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q ,

where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq. Thus, Pred is a symplectic manifold, it is
therefore even-dimensional and its dimension is

dim Pred “ dim P ´ dim g ´ dim gm .

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface. The hamiltonian vector fields �e�̄ corresponding to
functions M�̄ are in a sense “perpendicular” to the constrained manifold.

The Dirac bracket

tf, huD “ tf, hu ´ tf, M�̄uM´1
�̄�̄

tM�̄ , hu (1.35)

g˚

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
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m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
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tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface. The hamiltonian vector fields �e�̄ corresponding to
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This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .

It is clear that the Kirillov-Kostant bracket is degenerate as is seen, for instance, from
the fact that the corresponding Poisson tensor vanishes at � “ 0. There is a beautiful
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algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Mpxq “ m

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i
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Therefore,
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Gm
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g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .
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Orbits of

Since � is non-degenerate

TxpM´1pmqqK “
´
TxpG ¨ xqK

¯K “ TxpG ¨ xq ,

i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.

G

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.

Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq. Thus, Pred is a symplectic manifold, it is
therefore even-dimensional and its dimension is

dim Pred “ dim P ´ dim g ´ dim gm .

Now we can establish a connection to the Dirac classification of the constraints. To this
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tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface. The hamiltonian vector fields �e�̄ corresponding to
functions M�̄ are in a sense “perpendicular” to the constrained manifold.

The Dirac bracket

tf, huD “ tf, hu ´ tf, M�̄uM´1
�̄�̄

tM�̄ , hu (1.35)

g˚

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
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duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
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Figure 3.1: Geometric picture of hamiltonian reduction.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define a quotient

Pred “ µ´1pmq{Gm . (3.29)

This quotient is usually referred to as the reduced phase space, see Fig. 3.1. If the value m is
such that the action of Gm on µ´1pmq is free and proper2, then according to the well-known
theorem Pred is a smooth manifold.

µpxq “ m (3.30)

A theorem due to Marsden and Weinstein [37] asserts that Pred is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, evaluate
� on a vector field �i of ei and an arbitrary vector field � tangent to P. We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i is hamiltonian. If we now assume that � is tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

2 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).
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As to the second constraint, the general solution for T is given by the product T “ hT0 of

an arbitrary h P F# and a particular solution T0 P F of the second equation, which we can

choose, for instance, as

T0pqq “

¨
˚̊
˚̊
˚̋

b1p´qq b2p´qq ´ 1 b3p´qq ´ 1 . . . bN p´qq ´ 1

0 1 0 0

0 0 1 0

...

. . .
...

0 0 0 . . . 1

˛
‹‹‹‹‹‚

. (3.272)

Thus, S “ µ´1pnq is a set

p�, gq � T˚G ,
(3.273)

where

� “ hT0pqqQT0pqq´1h´1, g “ hT0pqqW pqqP´1T0pqq´1h´1 . (3.274)

Here Q, P are unrestricted (modulo Weyl ordering) and h is an arbitrary element of F#.

The reduced phase space Pred is then obtained in the standard fashion by taking a quotient

of the level set of the moment map over the action of its stability subgroup coinciding in

the present case with F#

Pred “ S{F# .
(3.275)

Naturally, pQ, P q can be regarded as coordinates on Pred. Since these coordinates inherit

from T˚G the canonical Poisson bracket (3.252), the reduced phase space is symplectic.

The formal counting of its dimension goes as follows. The adjoint action (3.62) of G on

T˚G is not e�ective, as GL1 acts trivially. Formula (3.30) then gives

dim Pred “ dimpT˚Gq ´ dimpGLnn{GL1q ´ dimpF#q “ 2N2 ´ pN2 ´ 1q ´ pN ´ 1q2 “ 2N .

This completes the construction of the reduced phase space.

Dirac bracket and Frobenius invariants. Now we discuss the procedure of computing

the Poisson structure on the reduced space by using the concept of the Dirac bracket and

show that this naturally leads to a construction of the Lax pair from our geometric context.

Let f# be a Lie algebra of F# and let d denote a one-dimensional subalgebra corresponding

to GL1. The Lie algebra g can be expanded into a direct sum of vector spaces

g “ f# ‘ c ‘ a ‘ d “ f ‘ a ‘ d . (3.276)

Here a and c are two abelian N ´ 1-dimensional Lie subalgebras. In this decomposition the

summand f# ‘ c coincides with the Frobenius Lie algebra f. We note for completeness that

f ‘ d is isomorphic to the maximal parabolic subalgebra p of g

p “
"ˆ

a �xt

0 A

˙
P GLn

*
. (3.277)

where �x is N ´ 1-dimensional vector, a P C and A P GLN´1.
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Second, (2.18) implies that the moment map is G-equivariant. This has the following
meaning. Let gptq be a one-parametric subgroup corresponding to X P g. According to the
definition (2.12), a shift x Ñ gptq´1 ¨ x is generated by the vector field �X . This vector field
acts on the moment map as follows

x�Xµpxq, Y y “ �XfY pxq “ tfX , fY upxq “ frX,Y spxq “ xµpxq, rX, Y sy ,

from which we deduce that

�Xµpxq “ ´adX̊µpxq . (2.25)

The global version of this action is µpg´1 ¨ xq “ Ad˚
g´1µpxq or, upon replacing g Ñ g´1,

µpg ¨ xq “ Adg̊µpxq . (2.26)

Thus, the moment map intertwines the group action on P with the coadjoint action so that
an orbit of G in P is mapped under µ into a coadjoint orbit in g˚.

To summarise, we have shown that the moment map (2.17) is an equivariant mapping
of Poisson manifolds. In 2.1.6 we return to the discussion of the moment map but from a
di�erent angle.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define the quotient

Pr “ µ´1pmq{Gm . (2.27)

This quotient is usually referred to as the reduced phase space, see Fig. 2.1. If m is chosen
such that the action of Gm on µ´1pmq is free and proper5, then according to the well-known
theorem Pr is a smooth manifold.

A theorem due to Marsden and Weinstein [2] asserts that Pr is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, let us
evaluate � on the vector field �i “ �ei of a basis element ei and an arbitrary vector field �.
We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i has the hamiltonian function µipxq, see (2.24). If we further assume that � is
tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

Since �i span at x P µ´1pmq the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set µ´1pmq

Txpµ´1pmqq “ TxpG ¨ xqK .

5 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).
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Figure 1: Geometric picture of reduction.

Marsden-Weinstein theorem. Let P be a symplectic manifold with the 2-form !. For a fixed
m 2 g⇤ denote by Gm ⇢ G its stabiliser under the coadjoint action. Consider the inverse image
µ�1(m) ⇢ P . This subspace is invariant under the action of Gm. Indeed, for g 2 Gm and
x 2 µ�1(m) one has

µ(g · x) = Ad⇤gµ(x) = Ad⇤gm = m,

that is g · x 2 µ�1(m). Thus, one can define the quotient

Pr = µ
�1(m)/Gm . (100)

This quotient is usually referred to as the reduced phase space, see Fig. 1. If m is chosen such
that the action of Gm on µ�1(m) is free and proper, then according to the known theorem Pr is a
smooth manifold. The Marsden-Weinstein theorem is a statement that Pr is a symplectic manifold
with the symplectic structure inherited from ! on P .

S

To get an idea of the proof of the Marsden-Weinstein theorem, let us evaluate ! on the vector
field ⇠i ⌘ ⇠ei of a basis element ei and an arbitrary vector field ⌘. We have

!(⇠i, ⌘) = �dµi (⌘) = �⌘µi ,

because ⇠i has µi (x) as its hamiltonian function, see (97). If we further assume that ⌘ is tangent to
µ�1(m), then

!x (⇠i, ⌘) = �⌘µi ���µ(x)=m
= 0 .

Since ⇠i span at x 2 µ�1(m) the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set S⌘ µ�1(m)

TxS= Tx (G · x)? .

Since ! is non-degenerate,

TxS
? =

�
Tx (G · x)?

�?
= Tx (G · x) ,
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algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Gm

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
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fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as
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ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i
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Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i
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Therefore,
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Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have
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The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .

It is clear that the Kirillov-Kostant bracket is degenerate as is seen, for instance, from
the fact that the corresponding Poisson tensor vanishes at � “ 0. There is a beautiful
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Phase space

algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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Orbits of

Since � is non-degenerate

TxpM´1pmqqK “
´
TxpG ¨ xqK

¯K “ TxpG ¨ xq ,

i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.

G

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.

Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
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vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q ,

where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq. Thus, Pred is a symplectic manifold, it is
therefore even-dimensional and its dimension is

dim Pred “ dim P ´ dim g ´ dim gm .

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface. The hamiltonian vector fields �e�̄ corresponding to
functions M�̄ are in a sense “perpendicular” to the constrained manifold.

The Dirac bracket

tf, huD “ tf, hu ´ tf, M�̄uM´1
�̄�̄

tM�̄ , hu (1.35)

g˚

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
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Figure 3.1: Geometric picture of hamiltonian reduction.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define a quotient

Pred “ µ´1pmq{Gm . (3.29)

This quotient is usually referred to as the reduced phase space, see Fig. 3.1. If the value m is
such that the action of Gm on µ´1pmq is free and proper2, then according to the well-known
theorem Pred is a smooth manifold.

µpxq “ m (3.30)

A theorem due to Marsden and Weinstein [37] asserts that Pred is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, evaluate
� on a vector field �i of ei and an arbitrary vector field � tangent to P. We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i is hamiltonian. If we now assume that � is tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

2 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).
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As to the second constraint, the general solution for T is given by the product T “ hT0 of

an arbitrary h P F# and a particular solution T0 P F of the second equation, which we can

choose, for instance, as

T0pqq “

¨
˚̊
˚̊
˚̋

b1p´qq b2p´qq ´ 1 b3p´qq ´ 1 . . . bN p´qq ´ 1

0 1 0 0

0 0 1 0

...

. . .
...

0 0 0 . . . 1

˛
‹‹‹‹‹‚

. (3.272)

Thus, S “ µ´1pnq is a set

p�, gq � T˚G ,
(3.273)

where

� “ hT0pqqQT0pqq´1h´1, g “ hT0pqqW pqqP´1T0pqq´1h´1 . (3.274)

Here Q, P are unrestricted (modulo Weyl ordering) and h is an arbitrary element of F#.

The reduced phase space Pred is then obtained in the standard fashion by taking a quotient

of the level set of the moment map over the action of its stability subgroup coinciding in

the present case with F#

Pred “ S{F# .
(3.275)

Naturally, pQ, P q can be regarded as coordinates on Pred. Since these coordinates inherit

from T˚G the canonical Poisson bracket (3.252), the reduced phase space is symplectic.

The formal counting of its dimension goes as follows. The adjoint action (3.62) of G on

T˚G is not e�ective, as GL1 acts trivially. Formula (3.30) then gives

dim Pred “ dimpT˚Gq ´ dimpGLnn{GL1q ´ dimpF#q “ 2N2 ´ pN2 ´ 1q ´ pN ´ 1q2 “ 2N .

This completes the construction of the reduced phase space.

Dirac bracket and Frobenius invariants. Now we discuss the procedure of computing

the Poisson structure on the reduced space by using the concept of the Dirac bracket and

show that this naturally leads to a construction of the Lax pair from our geometric context.

Let f# be a Lie algebra of F# and let d denote a one-dimensional subalgebra corresponding

to GL1. The Lie algebra g can be expanded into a direct sum of vector spaces

g “ f# ‘ c ‘ a ‘ d “ f ‘ a ‘ d . (3.276)

Here a and c are two abelian N ´ 1-dimensional Lie subalgebras. In this decomposition the

summand f# ‘ c coincides with the Frobenius Lie algebra f. We note for completeness that

f ‘ d is isomorphic to the maximal parabolic subalgebra p of g

p “
"ˆ

a �xt

0 A

˙
P GLn

*
. (3.277)

where �x is N ´ 1-dimensional vector, a P C and A P GLN´1.
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Second, (2.18) implies that the moment map is G-equivariant. This has the following
meaning. Let gptq be a one-parametric subgroup corresponding to X P g. According to the
definition (2.12), a shift x Ñ gptq´1 ¨ x is generated by the vector field �X . This vector field
acts on the moment map as follows

x�Xµpxq, Y y “ �XfY pxq “ tfX , fY upxq “ frX,Y spxq “ xµpxq, rX, Y sy ,

from which we deduce that

�Xµpxq “ ´adX̊µpxq . (2.25)

The global version of this action is µpg´1 ¨ xq “ Ad˚
g´1µpxq or, upon replacing g Ñ g´1,

µpg ¨ xq “ Adg̊µpxq . (2.26)

Thus, the moment map intertwines the group action on P with the coadjoint action so that
an orbit of G in P is mapped under µ into a coadjoint orbit in g˚.

To summarise, we have shown that the moment map (2.17) is an equivariant mapping
of Poisson manifolds. In 2.1.6 we return to the discussion of the moment map but from a
di�erent angle.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define the quotient

Pr “ µ´1pmq{Gm . (2.27)

This quotient is usually referred to as the reduced phase space, see Fig. 2.1. If m is chosen
such that the action of Gm on µ´1pmq is free and proper5, then according to the well-known
theorem Pr is a smooth manifold.

A theorem due to Marsden and Weinstein [2] asserts that Pr is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, let us
evaluate � on the vector field �i “ �ei of a basis element ei and an arbitrary vector field �.
We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i has the hamiltonian function µipxq, see (2.24). If we further assume that � is
tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

Since �i span at x P µ´1pmq the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set µ´1pmq

Txpµ´1pmqq “ TxpG ¨ xqK .

5 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).
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Figure 1: Geometric picture of reduction.

Marsden-Weinstein theorem. Let P be a symplectic manifold with the 2-form !. For a fixed
m 2 g⇤ denote by Gm ⇢ G its stabiliser under the coadjoint action. Consider the inverse image
µ�1(m) ⇢ P . This subspace is invariant under the action of Gm. Indeed, for g 2 Gm and
x 2 µ�1(m) one has

µ(g · x) = Ad⇤gµ(x) = Ad⇤gm = m,

that is g · x 2 µ�1(m). Thus, one can define the quotient

Pr = µ
�1(m)/Gm . (100)

This quotient is usually referred to as the reduced phase space, see Fig. 1. If m is chosen such
that the action of Gm on µ�1(m) is free and proper, then according to the known theorem Pr is a
smooth manifold. The Marsden-Weinstein theorem is a statement that Pr is a symplectic manifold
with the symplectic structure inherited from ! on P .

Pr

To get an idea of the proof of the Marsden-Weinstein theorem, let us evaluate ! on the vector
field ⇠i ⌘ ⇠ei of a basis element ei and an arbitrary vector field ⌘. We have

!(⇠i, ⌘) = �dµi (⌘) = �⌘µi ,

because ⇠i has µi (x) as its hamiltonian function, see (97). If we further assume that ⌘ is tangent to
µ�1(m), then

!x (⇠i, ⌘) = �⌘µi ���µ(x)=m
= 0 .

Since ⇠i span at x 2 µ�1(m) the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set S⌘ µ�1(m)

TxS= Tx (G · x)? .

Since ! is non-degenerate,

TxS
? =

�
Tx (G · x)?

�?
= Tx (G · x) ,
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algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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Constrained surfaceOrbits of stabilizer

The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Gm

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .
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Orbits of

Since � is non-degenerate

TxpM´1pmqqK “
´
TxpG ¨ xqK

¯K “ TxpG ¨ xq ,

i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.

G

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.

Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq. Thus, Pred is a symplectic manifold, it is
therefore even-dimensional and its dimension is

dim Pred “ dim P ´ dim g ´ dim gm .

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have
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that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface. The hamiltonian vector fields �e�̄ corresponding to
functions M�̄ are in a sense “perpendicular” to the constrained manifold.

The Dirac bracket

tf, huD “ tf, hu ´ tf, M�̄uM´1
�̄�̄

tM�̄ , hu (1.35)

g˚

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .

It is clear that the Kirillov-Kostant bracket is degenerate as is seen, for instance, from
the fact that the corresponding Poisson tensor vanishes at � “ 0. There is a beautiful

12

Phase space

algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.
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Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .
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TxpM´1pmqqK “
´
TxpG ¨ xqK

¯K “ TxpG ¨ xq ,

i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.

G

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.

Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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Figure 3.1: Geometric picture of hamiltonian reduction.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define a quotient

Pred “ µ´1pmq{Gm . (3.29)

This quotient is usually referred to as the reduced phase space, see Fig. 3.1. If the value m is
such that the action of Gm on µ´1pmq is free and proper2, then according to the well-known
theorem Pred is a smooth manifold.

µpxq “ m (3.30)

A theorem due to Marsden and Weinstein [37] asserts that Pred is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, evaluate
� on a vector field �i of ei and an arbitrary vector field � tangent to P. We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i is hamiltonian. If we now assume that � is tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

2 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).
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As to the second constraint, the general solution for T is given by the product T “ hT0 of

an arbitrary h P F# and a particular solution T0 P F of the second equation, which we can

choose, for instance, as

T0pqq “

¨
˚̊
˚̊
˚̋

b1p´qq b2p´qq ´ 1 b3p´qq ´ 1 . . . bN p´qq ´ 1

0 1 0 0

0 0 1 0

...

. . .
...

0 0 0 . . . 1

˛
‹‹‹‹‹‚

. (3.272)

Thus, S “ µ´1pnq is a set

p�, gq � T˚G ,
(3.273)

where

� “ hT0pqqQT0pqq´1h´1, g “ hT0pqqW pqqP´1T0pqq´1h´1 . (3.274)

Here Q, P are unrestricted (modulo Weyl ordering) and h is an arbitrary element of F#.

The reduced phase space Pred is then obtained in the standard fashion by taking a quotient

of the level set of the moment map over the action of its stability subgroup coinciding in

the present case with F#

Pred “ S{F# .
(3.275)

Naturally, pQ, P q can be regarded as coordinates on Pred. Since these coordinates inherit

from T˚G the canonical Poisson bracket (3.252), the reduced phase space is symplectic.

The formal counting of its dimension goes as follows. The adjoint action (3.62) of G on

T˚G is not e�ective, as GL1 acts trivially. Formula (3.30) then gives

dim Pred “ dimpT˚Gq ´ dimpGLnn{GL1q ´ dimpF#q “ 2N2 ´ pN2 ´ 1q ´ pN ´ 1q2 “ 2N .

This completes the construction of the reduced phase space.

Dirac bracket and Frobenius invariants. Now we discuss the procedure of computing

the Poisson structure on the reduced space by using the concept of the Dirac bracket and

show that this naturally leads to a construction of the Lax pair from our geometric context.

Let f# be a Lie algebra of F# and let d denote a one-dimensional subalgebra corresponding

to GL1. The Lie algebra g can be expanded into a direct sum of vector spaces

g “ f# ‘ c ‘ a ‘ d “ f ‘ a ‘ d . (3.276)

Here a and c are two abelian N ´ 1-dimensional Lie subalgebras. In this decomposition the

summand f# ‘ c coincides with the Frobenius Lie algebra f. We note for completeness that

f ‘ d is isomorphic to the maximal parabolic subalgebra p of g

p “
"ˆ

a �xt

0 A

˙
P GLn

*
. (3.277)

where �x is N ´ 1-dimensional vector, a P C and A P GLN´1.
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Second, (2.18) implies that the moment map is G-equivariant. This has the following
meaning. Let gptq be a one-parametric subgroup corresponding to X P g. According to the
definition (2.12), a shift x Ñ gptq´1 ¨ x is generated by the vector field �X . This vector field
acts on the moment map as follows

x�Xµpxq, Y y “ �XfY pxq “ tfX , fY upxq “ frX,Y spxq “ xµpxq, rX, Y sy ,

from which we deduce that

�Xµpxq “ ´adX̊µpxq . (2.25)

The global version of this action is µpg´1 ¨ xq “ Ad˚
g´1µpxq or, upon replacing g Ñ g´1,

µpg ¨ xq “ Adg̊µpxq . (2.26)

Thus, the moment map intertwines the group action on P with the coadjoint action so that
an orbit of G in P is mapped under µ into a coadjoint orbit in g˚.

To summarise, we have shown that the moment map (2.17) is an equivariant mapping
of Poisson manifolds. In 2.1.6 we return to the discussion of the moment map but from a
di�erent angle.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define the quotient

Pr “ µ´1pmq{Gm . (2.27)

This quotient is usually referred to as the reduced phase space, see Fig. 2.1. If m is chosen
such that the action of Gm on µ´1pmq is free and proper5, then according to the well-known
theorem Pr is a smooth manifold.

A theorem due to Marsden and Weinstein [2] asserts that Pr is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, let us
evaluate � on the vector field �i “ �ei of a basis element ei and an arbitrary vector field �.
We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i has the hamiltonian function µipxq, see (2.24). If we further assume that � is
tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

Since �i span at x P µ´1pmq the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set µ´1pmq

Txpµ´1pmqq “ TxpG ¨ xqK .

5 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).
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Figure 1: Geometric picture of reduction.

Marsden-Weinstein theorem. Let P be a symplectic manifold with the 2-form !. For a fixed
m 2 g⇤ denote by Gm ⇢ G its stabiliser under the coadjoint action. Consider the inverse image
µ�1(m) ⇢ P . This subspace is invariant under the action of Gm. Indeed, for g 2 Gm and
x 2 µ�1(m) one has

µ(g · x) = Ad⇤gµ(x) = Ad⇤gm = m,

that is g · x 2 µ�1(m). Thus, one can define the quotient

Pr = µ
�1(m)/Gm . (100)

This quotient is usually referred to as the reduced phase space, see Fig. 1. If m is chosen such
that the action of Gm on µ�1(m) is free and proper, then according to the known theorem Pr is a
smooth manifold. The Marsden-Weinstein theorem is a statement that Pr is a symplectic manifold
with the symplectic structure inherited from ! on P .

orbits of Gm

To get an idea of the proof of the Marsden-Weinstein theorem, let us evaluate ! on the vector
field ⇠i ⌘ ⇠ei of a basis element ei and an arbitrary vector field ⌘. We have

!(⇠i, ⌘) = �dµi (⌘) = �⌘µi ,

because ⇠i has µi (x) as its hamiltonian function, see (97). If we further assume that ⌘ is tangent to
µ�1(m), then

!x (⇠i, ⌘) = �⌘µi ���µ(x)=m
= 0 .

Since ⇠i span at x 2 µ�1(m) the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set S⌘ µ�1(m)

TxS= Tx (G · x)? .

Since ! is non-degenerate,

TxS
? =

�
Tx (G · x)?

�?
= Tx (G · x) ,
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algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Gm

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .
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Since � is non-degenerate

TxpM´1pmqqK “
´
TxpG ¨ xqK

¯K “ TxpG ¨ xq ,

i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.

G

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.

Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .
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where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq. Thus, Pred is a symplectic manifold, it is
therefore even-dimensional and its dimension is

dim Pred “ dim P ´ dim g ´ dim gm .

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have
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tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface. The hamiltonian vector fields �e�̄ corresponding to
functions M�̄ are in a sense “perpendicular” to the constrained manifold.

The Dirac bracket

tf, huD “ tf, hu ´ tf, M�̄uM´1
�̄�̄

tM�̄ , hu (1.35)

g˚

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .

It is clear that the Kirillov-Kostant bracket is degenerate as is seen, for instance, from
the fact that the corresponding Poisson tensor vanishes at � “ 0. There is a beautiful
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algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Mpxq “ m

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .
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Orbits of

Since � is non-degenerate

TxpM´1pmqqK “
´
TxpG ¨ xqK

¯K “ TxpG ¨ xq ,

i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.

G

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.

Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q ,

where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq. Thus, Pred is a symplectic manifold, it is
therefore even-dimensional and its dimension is

dim Pred “ dim P ´ dim g ´ dim gm .

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface. The hamiltonian vector fields �e�̄ corresponding to
functions M�̄ are in a sense “perpendicular” to the constrained manifold.

The Dirac bracket

tf, huD “ tf, hu ´ tf, M�̄uM´1
�̄�̄

tM�̄ , hu (1.35)

g˚

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
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This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
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Figure 3.1: Geometric picture of hamiltonian reduction.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define a quotient

Pred “ µ´1pmq{Gm . (3.29)

This quotient is usually referred to as the reduced phase space, see Fig. 3.1. If the value m is
such that the action of Gm on µ´1pmq is free and proper2, then according to the well-known
theorem Pred is a smooth manifold.

µpxq “ m (3.30)

A theorem due to Marsden and Weinstein [37] asserts that Pred is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, evaluate
� on a vector field �i of ei and an arbitrary vector field � tangent to P. We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i is hamiltonian. If we now assume that � is tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

2 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).
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As to the second constraint, the general solution for T is given by the product T “ hT0 of

an arbitrary h P F# and a particular solution T0 P F of the second equation, which we can

choose, for instance, as

T0pqq “

¨
˚̊
˚̊
˚̋

b1p´qq b2p´qq ´ 1 b3p´qq ´ 1 . . . bN p´qq ´ 1

0 1 0 0

0 0 1 0

...

. . .
...

0 0 0 . . . 1

˛
‹‹‹‹‹‚

. (3.272)

Thus, S “ µ´1pnq is a set

p�, gq � T˚G ,
(3.273)

where

� “ hT0pqqQT0pqq´1h´1, g “ hT0pqqW pqqP´1T0pqq´1h´1 . (3.274)

Here Q, P are unrestricted (modulo Weyl ordering) and h is an arbitrary element of F#.

The reduced phase space Pred is then obtained in the standard fashion by taking a quotient

of the level set of the moment map over the action of its stability subgroup coinciding in

the present case with F#

Pred “ S{F# .
(3.275)

Naturally, pQ, P q can be regarded as coordinates on Pred. Since these coordinates inherit

from T˚G the canonical Poisson bracket (3.252), the reduced phase space is symplectic.

The formal counting of its dimension goes as follows. The adjoint action (3.62) of G on

T˚G is not e�ective, as GL1 acts trivially. Formula (3.30) then gives

dim Pred “ dimpT˚Gq ´ dimpGLnn{GL1q ´ dimpF#q “ 2N2 ´ pN2 ´ 1q ´ pN ´ 1q2 “ 2N .

This completes the construction of the reduced phase space.

Dirac bracket and Frobenius invariants. Now we discuss the procedure of computing

the Poisson structure on the reduced space by using the concept of the Dirac bracket and

show that this naturally leads to a construction of the Lax pair from our geometric context.

Let f# be a Lie algebra of F# and let d denote a one-dimensional subalgebra corresponding

to GL1. The Lie algebra g can be expanded into a direct sum of vector spaces

g “ f# ‘ c ‘ a ‘ d “ f ‘ a ‘ d . (3.276)

Here a and c are two abelian N ´ 1-dimensional Lie subalgebras. In this decomposition the

summand f# ‘ c coincides with the Frobenius Lie algebra f. We note for completeness that

f ‘ d is isomorphic to the maximal parabolic subalgebra p of g

p “
"ˆ

a �xt

0 A

˙
P GLn

*
. (3.277)

where �x is N ´ 1-dimensional vector, a P C and A P GLN´1.
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Second, (2.18) implies that the moment map is G-equivariant. This has the following
meaning. Let gptq be a one-parametric subgroup corresponding to X P g. According to the
definition (2.12), a shift x Ñ gptq´1 ¨ x is generated by the vector field �X . This vector field
acts on the moment map as follows

x�Xµpxq, Y y “ �XfY pxq “ tfX , fY upxq “ frX,Y spxq “ xµpxq, rX, Y sy ,

from which we deduce that

�Xµpxq “ ´adX̊µpxq . (2.25)

The global version of this action is µpg´1 ¨ xq “ Ad˚
g´1µpxq or, upon replacing g Ñ g´1,

µpg ¨ xq “ Adg̊µpxq . (2.26)

Thus, the moment map intertwines the group action on P with the coadjoint action so that
an orbit of G in P is mapped under µ into a coadjoint orbit in g˚.

To summarise, we have shown that the moment map (2.17) is an equivariant mapping
of Poisson manifolds. In 2.1.6 we return to the discussion of the moment map but from a
di�erent angle.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define the quotient

Pr “ µ´1pmq{Gm . (2.27)

This quotient is usually referred to as the reduced phase space, see Fig. 2.1. If m is chosen
such that the action of Gm on µ´1pmq is free and proper5, then according to the well-known
theorem Pr is a smooth manifold.

A theorem due to Marsden and Weinstein [2] asserts that Pr is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, let us
evaluate � on the vector field �i “ �ei of a basis element ei and an arbitrary vector field �.
We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i has the hamiltonian function µipxq, see (2.24). If we further assume that � is
tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

Since �i span at x P µ´1pmq the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set µ´1pmq

Txpµ´1pmqq “ TxpG ¨ xqK .

5 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).
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Figure 1: Geometric picture of reduction.

Marsden-Weinstein theorem. Let P be a symplectic manifold with the 2-form !. For a fixed
m 2 g⇤ denote by Gm ⇢ G its stabiliser under the coadjoint action. Consider the inverse image
µ�1(m) ⇢ P . This subspace is invariant under the action of Gm. Indeed, for g 2 Gm and
x 2 µ�1(m) one has

µ(g · x) = Ad⇤gµ(x) = Ad⇤gm = m,

that is g · x 2 µ�1(m). Thus, one can define the quotient

Pr = µ
�1(m)/Gm . (100)

This quotient is usually referred to as the reduced phase space, see Fig. 1. If m is chosen such
that the action of Gm on µ�1(m) is free and proper, then according to the known theorem Pr is a
smooth manifold. The Marsden-Weinstein theorem is a statement that Pr is a symplectic manifold
with the symplectic structure inherited from ! on P .

orbits of G

To get an idea of the proof of the Marsden-Weinstein theorem, let us evaluate ! on the vector
field ⇠i ⌘ ⇠ei of a basis element ei and an arbitrary vector field ⌘. We have

!(⇠i, ⌘) = �dµi (⌘) = �⌘µi ,

because ⇠i has µi (x) as its hamiltonian function, see (97). If we further assume that ⌘ is tangent to
µ�1(m), then

!x (⇠i, ⌘) = �⌘µi ���µ(x)=m
= 0 .

Since ⇠i span at x 2 µ�1(m) the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set S⌘ µ�1(m)

TxS= Tx (G · x)? .

Since ! is non-degenerate,

TxS
? =

�
Tx (G · x)?

�?
= Tx (G · x) ,
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algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
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image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm
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Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.
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Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,
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between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as
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TxpM´1pmqqK “
´
TxpG ¨ xqK

¯K “ TxpG ¨ xq ,

i.e. these two tangent spaces are orthogonal complements of each other. Obviously,

TxM´1pmq X TxpG ¨ xq “ TxpGm ¨ xq
and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as

�redpr�s, r�sq “ �p�, �q
where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
classes defined modulo vectors from T pGµ ¨ xq.

G

Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
manifold and, therefore, if an initial point of a trajectory lies on this manifold then the
whole trajectory will be on it.

Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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The Dirac bracket

tf, huD “ tf, hu ´ tf, M�̄uM´1
�̄�̄

tM�̄ , hu (1.35)
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The global version of this action is, therefore, Mpg ¨ xq “ Ad˚
g´1Mpxq.

For m P g˚ denote by Gm its stabiliser under the coadjoint action. Consider the inverse
image M´1pmq � P. This subspace is invariant under the action of Gm. Indeed, for g P Gm

and x P M´1pmq one has

Mpg ¨ xq “ Ad´1
g Mpxq “ Ad´1

g m “ m ,

that is g ¨ x P M´1pmq. Thus, one can define a factor-space

Pred “ M´1pmq{Gm . (1.26)

This factor-space is known as the reduced phase space.

Suppose we have on P a dynamical system with a Hamiltonian H and the Hamiltonian
action of a Lie group G. The dynamics is called invariant under the action of G if

tH, FXu “ 0 , X P J , (1.27)

that is FX are integrals of motion.

Since the Lie derivative of � is nothing else but the variation of the form of the latter,
the Hamiltonian action is equivalent to the notion of canonical transformations generated
by the group action. Make contact with Noether.

Coadjoint orbits of a Lie group

Let G be a Lie group and g be its Lie algebra. Denote by g˚ a dual space to g, i.e. a space
of linear continuous functionals on g. Consider the algebra of smooth functions Fpg˚q on
g˚. If f P Fpg˚q then, according to the definition,

xm, dfp�qy “ lim
tÑ0

fp� ` tmq ´ fp�q
t

, �, m P g˚ ,

the di�erential df takes values in the Lie algebra g. Here x ¨, ¨ y denotes the natural pairing
between g and g˚. The Kirillov-Kostant Poisson bracket is then defined as

tf, hup�q “ x�, rdfp�q, dhp�qsy (1.28)

and it supplies the dual space to the Lie algebra with the structure of a Poisson manifold.

Let us pick a basis teiu in g, so that

rei, ejs “ fk
ijek ,

where fk
ij are the structure constants. Denote by ei a basis in g˚ defined as xei, ejy “ �i

j .

Then � “ �ie
i and �i are coordinates on g˚. We have d�i “ ei, and df “ d�i

Bf
B�i “ ei

Bf
B�i .

Therefore,

t�i, �ju “ x�, rei, ejsy “ fk
ij �k .

It is clear that the Kirillov-Kostant bracket is degenerate as is seen, for instance, from
the fact that the corresponding Poisson tensor vanishes at � “ 0. There is a beautiful
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Phase space

algebra g of G gives rise to the corresponding vector field �X . It is defined by its action on
functions as `

�Xf
˘pxq “ d

dt
f

`
eXt ¨ x

˘ˇ̌
ˇ
t“0

.

The action of G on P is called hamiltonian if for any X P g the corresponding vector field
�X is hamiltonian, i.e. there exists a single-valued function FX P FpPq such that

i�X
� ` dFX “ 0 . (1.21)

Being hamiltonian, �X generates a symplectic transformation, i.e. the hamiltonian action
of G on P is symplectic.

The function FX is determined by relation (1.21) up to an arbitrary x-independent constant.
Fixing these constants for all X, we obtain a well-defined linear map X Ñ FX , where the
corresponding functions FX will satisfy the following relation

FrX,Y s “ tFX , FY u ` cpX,Y q . (1.22)

Here c is a constant on P, while being is a bilinear skew-symmetric 2-form on g. The Jacobi
identity for the Poisson bracket yields for c an equation

cprX, Y s, Zq ` cprY, Zs, Xq ` cprZ, Xs, Y q “ 0 ,

meaning that c is a 2-cocycle on g. A trivial cocycle corresponds to cpX, Y q “ �prX, Y sq
where � P g˚. Such a cocycle can always be removed from (1.22) by redefining the hamilto-
nian functions as FX Ñ FX ´ �pXq. The Hamiltonian action of G on P is called Poisson if
the hamiltonian functions can be chosen to satisfy

FrX,Y s “ tFX , FY u .

In particular, this is always the case when the second cohomology class of g is trivial.

For any x P P a correspondence X Ñ FXpxq defines a linear functional on g which is
an element M P g˚. Explicitly,

xMpxq, Xy “ FXpxq . (1.23)

This relation defines a map M from the symplectic manifold into the dual space to the Lie
algebra

M : P Ñ g˚ , (1.24)

known as the moment map [Souriau]. For the Poisson action of G the moment map is
unique. It is also Ad˚

g´1-equivariant, as we now show. If gptq is a one-parametric group
corresponding to X P g, then an infinitesimal shift x Ñ gptq ¨x is generated by a vector field
�X . This vector field acts on the moment map as follows

x�XMpxq, Y y “ �XFY pxq “ tFX , FY upxq “ FrX,Y spxq “ xMpxq, rX, Y sy ,

that is

�XMpxq “ ´adX̊Mpxq . (1.25)
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and, therefore, any orbit of Gmm in M´1pmq is an isotropic submanifold, because any two
vector fields xi, � tangent to an orbit their skew-orthogonal scalar product vanishes

�xp�, �q “ 0 , x P M´1pmq .

This allows one to define a non-degenerate closed two-form �red on Pred as
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where �, � are vectors tangent to M´1pmq, and r�s, r�s are the corresponding equivalence
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Now we can establish a connection to the Dirac classification of the constraints. To this
end, we compute the Poisson bracket of the constraint functions Mipxq and reduce it on
the constrained surface. We have

tMi, Mjupxq
ˇ̌
ˇ
xPM´1pmq

“ xMpxq, rei, ejsy
ˇ̌
ˇ
Mpxq“m

“ xade̊j
m, eiy . (1.33)

From this expression we see that in the case ei P gµ, where gµ � g is the Lie algebra of Gm,
the bracket vanishes for any ej P g. This allows one to split the set of all constraints into
two

tMipxqu “ tM�pxq , � P 1, . . . , dim gµu Y tM�̄ , �̄ P 1, . . . , dimpg{gµqu . (1.34)

Constraints from the first set are called first class, and they have characteristic property
that then Poisson bracket of any two such constraints vanishes on the constrained surface.
The constraints from the second set are called second class, the matrix M�̄�̄ “ tM�̄, M�̄u
is invertible on the constraint surface.

This procedure of obtaining a new symplectic manifold Pred from P by means of re-
duction over the symplectic action of a Lie group is called the hamiltonian (or symplectic)
reduction. Explain that reduction means reducing a number of degrees of freedom, namely,
those which correspond to integrals of motion. Move this ideas as a foreword to this section..

Suppose we have on P a dynamical system with the Hamiltonian H. The dynamics is
said invariant under the action of G if

tH, FXu “ 0 , X P g . (1.35)

In this case FX are integrals of motion. The hamiltonian field �H is tangent to a level
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Make connection to the second class constraints and the Dirac bracket

Make contact with Noether.
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Figure 3.1: Geometric picture of hamiltonian reduction.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define a quotient

Pred “ µ´1pmq{Gm . (3.29)

This quotient is usually referred to as the reduced phase space, see Fig. 3.1. If the value m is
such that the action of Gm on µ´1pmq is free and proper2, then according to the well-known
theorem Pred is a smooth manifold.

µpxq “ m (3.30)

A theorem due to Marsden and Weinstein [37] asserts that Pred is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, evaluate
� on a vector field �i of ei and an arbitrary vector field � tangent to P. We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i is hamiltonian. If we now assume that � is tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

2 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).

73

As to the second constraint, the general solution for T is given by the product T “ hT0 of

an arbitrary h P F# and a particular solution T0 P F of the second equation, which we can

choose, for instance, as

T0pqq “

¨
˚̊
˚̊
˚̋

b1p´qq b2p´qq ´ 1 b3p´qq ´ 1 . . . bN p´qq ´ 1

0 1 0 0

0 0 1 0

...

. . .
...

0 0 0 . . . 1

˛
‹‹‹‹‹‚

. (3.272)

Thus, S “ µ´1pnq is a set

p�, gq � T˚G ,
(3.273)

where

� “ hT0pqqQT0pqq´1h´1, g “ hT0pqqW pqqP´1T0pqq´1h´1 . (3.274)

Here Q, P are unrestricted (modulo Weyl ordering) and h is an arbitrary element of F#.

The reduced phase space Pred is then obtained in the standard fashion by taking a quotient

of the level set of the moment map over the action of its stability subgroup coinciding in

the present case with F#

Pred “ S{F# .
(3.275)

Naturally, pQ, P q can be regarded as coordinates on Pred. Since these coordinates inherit

from T˚G the canonical Poisson bracket (3.252), the reduced phase space is symplectic.

The formal counting of its dimension goes as follows. The adjoint action (3.62) of G on

T˚G is not e�ective, as GL1 acts trivially. Formula (3.30) then gives

dim Pred “ dimpT˚Gq ´ dimpGLnn{GL1q ´ dimpF#q “ 2N2 ´ pN2 ´ 1q ´ pN ´ 1q2 “ 2N .

This completes the construction of the reduced phase space.

Dirac bracket and Frobenius invariants. Now we discuss the procedure of computing

the Poisson structure on the reduced space by using the concept of the Dirac bracket and

show that this naturally leads to a construction of the Lax pair from our geometric context.

Let f# be a Lie algebra of F# and let d denote a one-dimensional subalgebra corresponding

to GL1. The Lie algebra g can be expanded into a direct sum of vector spaces

g “ f# ‘ c ‘ a ‘ d “ f ‘ a ‘ d . (3.276)

Here a and c are two abelian N ´ 1-dimensional Lie subalgebras. In this decomposition the

summand f# ‘ c coincides with the Frobenius Lie algebra f. We note for completeness that

f ‘ d is isomorphic to the maximal parabolic subalgebra p of g

p “
"ˆ

a �xt

0 A

˙
P GLn

*
. (3.277)

where �x is N ´ 1-dimensional vector, a P C and A P GLN´1.
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Second, (2.18) implies that the moment map is G-equivariant. This has the following
meaning. Let gptq be a one-parametric subgroup corresponding to X P g. According to the
definition (2.12), a shift x Ñ gptq´1 ¨ x is generated by the vector field �X . This vector field
acts on the moment map as follows

x�Xµpxq, Y y “ �XfY pxq “ tfX , fY upxq “ frX,Y spxq “ xµpxq, rX, Y sy ,

from which we deduce that

�Xµpxq “ ´adX̊µpxq . (2.25)

The global version of this action is µpg´1 ¨ xq “ Ad˚
g´1µpxq or, upon replacing g Ñ g´1,

µpg ¨ xq “ Adg̊µpxq . (2.26)

Thus, the moment map intertwines the group action on P with the coadjoint action so that
an orbit of G in P is mapped under µ into a coadjoint orbit in g˚.

To summarise, we have shown that the moment map (2.17) is an equivariant mapping
of Poisson manifolds. In 2.1.6 we return to the discussion of the moment map but from a
di�erent angle.

Marsden & Weinstein theorem. For m P g˚ denote by Gm its stabiliser (isotropy
group) under the coadjoint action. Consider the inverse image µ´1pmq � P. This subspace
is invariant under the action of Gm. Indeed, for g P Gm and x P µ´1pmq one has

µpg ¨ xq “ Adg̊µpxq “ Adg̊m “ m ,

that is g ¨ x P µ´1pmq. Thus, one can define the quotient

Pr “ µ´1pmq{Gm . (2.27)

This quotient is usually referred to as the reduced phase space, see Fig. 2.1. If m is chosen
such that the action of Gm on µ´1pmq is free and proper5, then according to the well-known
theorem Pr is a smooth manifold.

A theorem due to Marsden and Weinstein [2] asserts that Pr is a symplectic manifold
with the symplectic structure inherited from � on P. To get an idea of the proof, let us
evaluate � on the vector field �i “ �ei of a basis element ei and an arbitrary vector field �.
We have

�p�i, �q “ ´dµip�q “ ´�µi ,

because �i has the hamiltonian function µipxq, see (2.24). If we further assume that � is
tangent to µ´1pmq, then

�xp�i, �q “ ´�µi

ˇ̌
ˇ
µpxq“m

“ 0 .

Since �i span at x P µ´1pmq the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set µ´1pmq

Txpµ´1pmqq “ TxpG ¨ xqK .

5 An action G ˆ P Ñ P is called free if there are no fixed points and proper if the map pg, xq Ñ px, g ¨ xq
is proper (that is inverse images of compact sets are compact).
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Figure 1: Geometric picture of reduction.

Marsden-Weinstein theorem. Let P be a symplectic manifold with the 2-form !. For a fixed
m 2 g⇤ denote by Gm ⇢ G its stabiliser under the coadjoint action. Consider the inverse image
µ�1(m) ⇢ P . This subspace is invariant under the action of Gm. Indeed, for g 2 Gm and
x 2 µ�1(m) one has

µ(g · x) = Ad⇤gµ(x) = Ad⇤gm = m,

that is g · x 2 µ�1(m). Thus, one can define the quotient

Pr = µ
�1(m)/Gm . (100)

This quotient is usually referred to as the reduced phase space, see Fig. 1. If m is chosen such
that the action of Gm on µ�1(m) is free and proper, then according to the known theorem Pr is a
smooth manifold. The Marsden-Weinstein theorem is a statement that Pr is a symplectic manifold
with the symplectic structure inherited from ! on P .

constraint surface

To get an idea of the proof of the Marsden-Weinstein theorem, let us evaluate ! on the vector
field ⇠i ⌘ ⇠ei of a basis element ei and an arbitrary vector field ⌘. We have

!(⇠i, ⌘) = �dµi (⌘) = �⌘µi ,

because ⇠i has µi (x) as its hamiltonian function, see (97). If we further assume that ⌘ is tangent to
µ�1(m), then

!x (⇠i, ⌘) = �⌘µi ���µ(x)=m
= 0 .

Since ⇠i span at x 2 µ�1(m) the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set S⌘ µ�1(m)

TxS= Tx (G · x)? .

Since ! is non-degenerate,

TxS
? =

�
Tx (G · x)?

�?
= Tx (G · x) ,
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Figure 1: Geometric picture of reduction.

because ξi has µi (x) as its hamiltonian function, see (2.25). If we further assume that η is tangent
to µ−1(m), then

ωx (ξi, η) = −ηµi ���µ(x)=m
= 0 .

Since ξi span at x ∈ µ−1(m) the tangent space to the orbit of G through x, this space is a
skew-orthogonal complement of the tangent space to the level set S≡ µ−1(m)

TxS= Tx (G · x)⊥ .

Since ω is non-degenerate,

TxS
⊥ =

(
Tx (G · x)⊥

)⊥
= Tx (G · x) ,

i.e. these two tangent spaces are orthogonal complements to each other. Obviously,

TxS∩ Tx (G · x) = Tx (Gm · x) .

Thus, the kernel of ω restricted on S is spanned at x ∈ S by all the vectors tangent to the orbit of
Gm at this point.15 This allows one to define a non-degenerate closed 2-form Ω as

Ωx ([ξ], [η]) = ωx (ξ, η) ,

where ξ, η are vectors tangent to µ−1(m) at x, and [ξ], [η] are their equivalence classes defined
modulo vectors from T (Gm · x). This form does not depend on a point x along Gm, because ω
is invariant under Gm: ωg ·x (g∗ξ, g∗η) = ωx (ξ, η) for g ∈ Gm. Hence Ω is a well-defined form
on Pr which equips it with the structure of a symplectic manifold. If µ is a submersion, then the
dimension of Pr is

dim Pr = dim P − dim g − dim gm , (2.29)

which is ipso facto an even number.

15 In particular, any orbit of Gm in S is an isotropic submanifold, as the symplectic form evaluated on any two vector
fields ξ, η tangent to an orbit vanishes: ωx (ξ, η) = 0, x ∈ S.
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The symplectic form Ω can be effectively inverted with the help of the Dirac bracket construc-
tion. According to (2.23), the Poisson brackets of µi (x)’s reduced on the constraint surface take the
form

{µi, µ j }(x)���x∈S = 〈µ(x), [ei, e j]〉���µ(x)=m
= 〈ad∗e j m, ei〉 . (2.30)

We arrange basis vectors {ei } of g such that the first dim gm vectorswith i = 1, . . . , dim gm constitute
a basis of gm, where gm ⊂ g is the Lie algebra of the stabiliser Gm of m. In the case e j ∈ gm the
bracket (2.30) vanishes for any ei ∈ g. This observation motivates to split all the constraints into
two sets

{µi (x)} = {µα(x) , α ∈ 1, . . . , dim gm} ∪ {µᾱ(x) , ᾱ ∈ 1, . . . , dim(g/gm)} . (2.31)

Constraints from the first set are called first class, they have the characteristic property that their
Poisson bracket with any constraint vanishes on the constraint surface. Transformations of the
phase space induced by the hamiltonian vector fields of µα are known in physics context as gauge
transformations. These transformations form a gauge group which, by construction, coincides with
the stabiliser Gm of the fixed value m of the moment map.

The constraints from the second set are called second class, the matrix Ψᾱβ̄ = {µᾱ, µβ̄ } is
invertible in some neighbourhood of the constraint surface. The hamiltonian vector fields ξᾱ
corresponding to functions µᾱ are “transversal” to S. For any two functions f and h on P the
Dirac bracket is then defined as

{ f , h}D = { f , h} − { f , µᾱ}Ψ−1
ᾱβ̄
{µβ̄, h} . (2.32)

One can show that this bracket obeys the Jacobi identity and its inverse on Pr coincides with Ω.
Invariant dynamics. The Marsden-Weinstein theorem gives a construction of a symplectic man-
ifold from another one equipped with a hamiltonian action of a Lie group G. Let on a symplectic
manifold P a dynamical system be given with a hamiltonian H invariant under the action of G.
Let ξX be the hamiltonian vector field of X ∈ g. The invariance of H means that

−ξXH = {H, fX } = dfX
dt
= 0 , (2.33)

where t is the time parameter along the flow generated by H . Hence, the hamiltonian functions fX
are integrals of motion and, as a consequence, the moment map (2.17) remains constant along the
trajectories of the dynamical system µ(x(t)) = const. Equation (2.33) is a hamiltonian analogue of
Noether’s theorem that provides a relation between variational symmetries and conservation laws.
From a geometric point of view, conservation of the momentummap means that if the starting point
of a trajectory of the hamiltonian system is on the surface µ(x) = m, then the whole trajectory lies
on this surface.
Coadjoint orbits from reduction of T∗G. As a straightforward application of the hamiltonian
reduction technique, we consider the reduction of T∗G with respect to the left or right action of G,
which in both cases produces coadjoint orbits as reduced phase spaces. Recall that the left and right
actions of G on T∗G ' G × g∗ are

h · (g, `) = (hg, `) , (g, `) · h−1 = (gh−1,Ad∗h`) , (2.34)
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where h ∈ G and used employed the left parameterisation of the cotangent bundle by a pair (g, `).
By using (1.42) one can verify that the moment maps of these actions are

µl (g, `) = −Ad∗g` = −m, µr (g, `) = ` ,

see, for instance, [9] for details. For the reduction under the left action, we fix the moment map µl

to a constant value −m0. The constraint surface S= µ−1
l (m0) is then

S= {(g,Ad∗
g−1m0) , g ∈ G} ' G .

If Gm0 is an isotropy subgroup of m0, then the reduced phase space can be either modelled as a left
cosetPr = Gm0\G or alternatively as the coadjoint orbitPr = {Ad∗

g−1m0, g ∈ G} = Om0 through
m0. Note that this kind of reduction is physically realised in the case of hamiltonian dynamics
of Euler’s top. Fixing m0 is the same as fixing the value of the conserved angular momentum
J in the stationary frame. Identifying g∗ with g by means of the non-degenerate bilinear form
(a, b) = Tr(ab), where a, b ∈ so(n), we obtain a coadjoint orbit ` = g−1 Jg which is the phase space
for Euler’s top.

For the right action the moment map µr coincides with the projection of an element (g, `) on
its second component and fixing it to a constant value `0 gives S' G × `0 ' G. The reduced phase
space is a coadjoint orbit O`0 which is modelled this time by the right coset Pr = G/G`0 .

2.3 Hyperbolic CMS model from reduction

Here we consider an interesting application of the reduction technique for deriving an integrable of
the CMS type from T∗G. Historically, this derivation goes back to [10], where the corresponding
models with rational and trigonometric potentials have been obtained from T∗g and T∗G, respec-
tively. Since we are mostly interested in the algebraic aspects, we neglect the issue of reality
conditions by working within algebraic (holomorphic) approach, where the role of the phase space
is played by a complex algebraic manifold [11]. Adopting this approach and staring from T∗G as
an initial phase space, we derive the CMS model of type III.

We take G = GL(N,C) and consider the combined left-right action of G on T∗G, namely,

h · (g, `) · h−1 = (hgh−1,Ad∗h`) .

It follows from our considerations that this action is hamiltonian and the corresponding moment
map µ is obtained as the sum of the moment maps for the left and right actions

µ = ` − g`g−1 ,

where we have identified g∗ with g = Mat(N,C) so that the coadjoint action becomes equivalent to
the adjoint one. We choose a value nof the moment map such that it would have the stabiliserGn of
maximal dimension, so that the corresponding coadjoint orbit would have the minimal dimension.
We therefore take

n = e ⊗ et − 1 .
where e is a N-dimension vector with all entries equal to one. Indeed, n has N − 1 coincident
eigenvalues, Gn ' GL(1) × GL(N − 1) and, therefore, the orbit in g∗ we are interested in, is
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isomorphic to the coset On ' GL(N )/
(
GL(1) ×GL(N − 1)

)
. This orbit has a complex dimension

2(N − 1) and is among the orbits of minimal positive dimension. Thus, the moment map equation
we will consider is

` − g`g−1 = iγ(e ⊗ et − 1) , (2.35)

where γ is an arbitrary constant. To solve this equation, we restrict ourselves to diagonalisable
elements g ∈ G which admit the following representation

g = TQ T−1 , (2.36)

where Q is a diagonal matrix with pairwise different non-vanishing eigenvalues. To fix matrix
T ∈ G uniquely, we requite it to obey the so-called Frobenius condition [12]

Te = e . (2.37)

Obviously, the set of matrices satisfying this condition form a group F. The Lie algebra f of this
group is Frobenius, i.e. it admits a a non-degenerate 2-cocycle that is coboundary, which explains
the name "Frobenius condition" for (2.37). The group F is then called Frobenius group.

Substituting (2.36) into (2.35) and multiplying (2.35) with T−1 from the left and with T from
the right, we get

L − Q LQ −1 = iγ(e ⊗ et T − 1) , (2.38)

where we have introduced

L = T−1`T ∈ g . (2.39)

First, we note that the diagonal part of the left hand side of (2.38) vanishes which for the right
hand side implies the condition etT = 0. With this condition at hand, we project (2.38) on the
off-diagonal part and solve the corresponding equation for Li j

Li j = −iγ
Qj

Qi j
, i , j , (2.40)

with Qi j = Qi − Qj . The diagonal part of L decouples from (2.38) and therefore remains arbitrary.
Hence, for L we find the following solution

L =
N∑

i=1
piEii − iγ

N∑

i,j

Qj

Qi j
Ei j , (2.41)

which is obviously the same that matrix L from the Lax pair (1.57) for the hyperbolic CMS model.
The stabiliser Gn consists of the one dimensional center of GL(N ) together with a group defined
by two conditions

{T ∈ G : Te = e, etT = et } ' GL(N − 1) . (2.42)

Because of the center, the coadjoint (adjoint) action of GL(N ) is not effective and as the result
equation (2.35) comprises N2 − 1 constraints rather than N , as is seen from the fact that the trace of
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(2.35) is automatically zero and does not lead to a separate constraint. For this reason the dimension
of the reduced phase space is computed by the formula which is slightly different from (2.29) and
takes into account the presence of the center

dim Pr = dim(T∗G)−dim(GL(N )/GL(1))−dim(G(N −1)) = 2N2− (N2−1)− (N −1)2 = 2N .

These 2N degrees of freedom are precisely n variables Qi and n variables pi, and they parametrise
the reduced phase space. Moreover, we can now see the geometric origin of the Lax matrix: its
entries are functions on the cotangent bundle invariant under the action of Gn. Indeed, under
h ∈ Gn, we have

` → h`h−1 , T → hT , (2.43)

in particular, here the transformation for T follows form the fact that a non-central h ∈ Gn is an
element of the Frobenius group. Under (2.43) the quantity L = T−1`T remains invariant.

To complete the discussion of the reduced phase space, we need to establish the Poisson
structure between the variables pi,Qi. Starting from (1.42), computation of the Poisson brackets of
T , Q and ` yields

{T1, `2} = T1T2s12T−1
2 , {Q1, `2} = −Q1T2C12T−1

2 ,

{Q1,T2} = 0 , {Q1,Q2} = 0 .
(2.44)

where

s12 = −
N∑

i,j

Qi

Qi j
(Eii − Ei j ) ⊗ Eji , C12 =

N∑

i=1
Eii ⊗ Eii . (2.45)

In deriving these formulae the Frobenius condition was essentially used, see [9] for details. Now
we obtain

{Q1, L2} = {Q1,T−1
2 `2T2} = −Q1C12 . (2.46)

From the structure of the right hand, it is clear that only the diagonal part of L contributes which
allows one to conclude that on the reduced phase space one has {Qi, pj } = −Qiδi j . If we parametrise
Qi = eqi , then the last formula implies the canonical bracket {pi, qj } = δi j .

We can further compute the Poisson bracket between components of the Lax matrix. We find

{L1, L2} = [r12, L1] − [r21, L2] , (2.47)

where r12 =
1
2C12 − s12, which explicitly reads as

r12 =
1
2

N∑

i, j

Ei j ⊗ Eji +

N∑

i,j

Qi

Qi j
(Eii − Ei j ) ⊗ Eji . (2.48)

Thus, the Poisson brackets between entries of the Lax matrix admit the required r-matrix form to
guarantee involutivity of IHk = TrLk . Clearly, the r-matrix is dynamical as it depends on Qi.
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Concerning the dynamics, we can take any invariant function of ` as the hamiltonian H .
Since invariants of ` are Casimirs of the Kirillov-Kostant bracket for `, the evolution equation for
L = T−1`T with any such hamiltonian will take the form of the Lax equation

dL
dt
= {H, L} = [M, L] , M = −T−1Ṫ , (2.49)

as ˙̀ = 0. Here the element T ≡ T (t) takes values in the space of solutions (2.42) of the moment
map equation (2.35). As a result, M can always be chosen to satisfy two conditions

Me = 0 , et M = 0 . (2.50)

As an example, consider the hamiltonian H = 1
2 Tr`2 = 1

2 TrL2. The Poisson bracket of H with L is
easily computed from (2.44) and one finds

M = Tr1(L1s21) = iγ
N∑

i,j

QiQj

Q 2
i j

(Eii − Ei j ) . (2.51)

Evidently, this matrix satisfies the conditions (2.50). As a consequence, M commutes with the
element e ⊗ et = ∑

i j Ei j .
Let us now show that solving equations of motion reduces to a variant of the factorisation

problem. On the initial phase space the equations of motion triggered by H = 1
2 Tr`2

ġ = g` , ˙̀ = 0

are trivially solved

ġ = Q (0)et` , ` = const,

where we assumed that at t = 0 the point g lies on the reduced phase space. Then at any later
moment of time, the exponentiated coordinates Q (t) are determined by solving the factorisation
problem

Q (0)et` = T (t)Q (t)T (t)−1 , T (t)e = e , (2.52)

with the initial condition T (0) = 1. Since L(t) = T−1(t)`T (t), we can identify ` = L(0), so that `
encodes the information on the initial coordinates and momenta. Once T (t) is found by algebraic
factorisation, one can compute pi (t) by projecting L(t) = T−1(t)L(0)T (t) on its diagonal part. In
this way solving the differential equations of motion was reduced to algebraic operations, hence to
quadrature.

This completes our derivation of the CMS model by means of the reduction from T∗G. For
recent applications of more involved reduction techniques which use the Poisson action of Poisson-
Lie groups and derivation in this context the relativistic generalisations of the (spin) CMS models,
known as the Ruijsenaars-Schneider (RS) models [13], see [14, 15] and the references therein.
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3. Quantum integrability I: Discrete spectrum

Determination of the spectrum of the Schrödinger operator is one of the central tasks of quantum
mechanics. The particularity of an integrable model is that the hamiltonian defining the correspond-
ing Schrödinger operator is a member of a commuting family of differential operators, so that one
can search for a basis of common eigenfunctions for all of them. Among various approaches to the
spectral problem the following two are the most advanced – the first is rooted in the theory of multi-
variable orthogonal polynomials, and the second is based on a special ansatz for the asymptotic
wave function. In particular, the second approach, known as Bethe Ansatz, is applicable to a large
variety of integrable models that support scattering, and we address it later. Here we concentrate
on the method of orthogonal polynomials, suitable for the case of a purely discrete spectrum. The
corresponding models include, for instance, the rational CMS model with a harmonic oscillator
potential, the trigonometric CMS and RS models.

3.1 Quantum trigonometric CMS model
To illustrate the procedure of constructing the spectrum of an integrable model by using the theory
of orthogonal polynomials, we employ the quantum trigonometric CMS model as an example. The
hamiltonian of this model is the following Schrödinger operator

H = −~
2

2

N∑

i=1
∂2
i −

γ(γ − ~)
2`2

N∑

i,j

QiQj

Q 2
i j

. (3.1)

where ∂i = ∂
∂qi

. This operator is obtained from the classical hamiltonian (1.50) by replacing the
classical momentum pi with its quantum counterpart pi → −i~∂i. We also found convenient to
write the potential via the exponential variables Qi = eiqi/` that are periodic functions of qi with
the period 2π`. The coupling constant g = γ2 > 0 of the classical theory was replaced with
g = γ(γ −~) so that in this parametrisation g automatically obeys g > −~2

4 for any real γ , ~
2 . This

replacement is related to the fact that in the rational degeneration of the model the negative values
of the coupling constant −~2

4 < g < 0 are also allowed.

Commutative operator families. The model is quantum integrable and the hamiltonian is a part of
the family of N pair-wise commuting operators. These operators can be constructed as quantisation
of the classical integrals (1.61). The first few read as

H1 = (−i~)
∑

i

∂i ,

H2 = (−i~)2
[ ∑

i

∂2
i +

β(β − 1)
`2

∑

i,j

QiQj

Q 2
i j

]
,

H3 = (−i~)3
[ ∑

i

∂3
i +

3β(β − 1)
`2

∑

i,j

QiQj

Q 2
i j

∂i

]
, (3.2)

H4 = (−i~)4

∑

i

∂4
i

+
β(β − 1)

`2

∑

i,j

QiQj

Q 2
i j

[
4∂2

i + 2∂i∂j − i
Qi + Qj

`Qi j
(∂i − ∂j ) −

Q 2
i + Q 2

j + 4QiQj

`2Q 2
i j

]
+
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+
β2(β − 1)2

`4

∑

i,j

Q 2
i Q 2

j

Q 4
i j

+
2β2(β − 1)2

`4

∑

i,j,k

QiQ 2
j Qk

Q 2
i jQ

2
jk

 ,
. . . . . . ,

where we have introduced the dimensionless coupling constant β = γ
~ . In particular, H1 = P is the

operator of total momentum. Note that starting from H4 the classical expressions get ~-corrections
to yield the normal ordered quantum integrals where all momenta (derivatives) are on the right from
coordinate-dependent expressions. There is another convenient basis of integrals which allows for
a compact general formula for k’th integral [16]

Dk = ~k
[k/2]∑

j=0

(−i)k−2j β j (β − 1) j

2j j!(k − 2 j)!`2j

∑

i1,...,ik

′ Qi1 Qi2

Q 2
i1i2

. . .
Qi2 j−1 Qi2 j

Q 2
i2 j−1i2 j

∂i2 j+1∂i2 j+2 . . . ∂ik , (3.3)

where Σ′ means that no two summation indices coincide. In the limit of zero coupling integrals Dk

turn into symmetric functions of derivatives that justifies for this bases the name symmetric. As is
seen from (3.3), the ordering of the coordinate and momentum operators within any individual sum
is irrelevant. Introducing the quantum Lax operator

L = −i~
∑

i

Eii∂i + γ
∑

i,j

Qj

Qi j
Ei j , (3.4)

one can verify that the integrals Dk are generated in the expansion of the following determinant
over the formal parameter ζ

det(ζ1 − L) =
N∑

k=0
ζN−k (−1)kDk , D0 = 1, (3.5)

where L is given by (3.4). As the reader can verify, in computing the above determinant by the
Laplace expansion no ordering ambiguity arises. Since classically L(γ)t = Q L(−γ)Q −1, where
Q =

∑
i QiEii, the determinant (3.4) is a function of γ2, so that once the determinant is computed,

one needs to substitute γ2 → ~2 β(β − 1) to get formula (3.3) for Dk . Finally, the relations between
the power sum and symmetric bases of integrals are given by the following determinant formulae

Hk =

��������������

D1 1 0 · · · 0
2D2 D1 1 · · · 0
...

... · · · · ...

(k − 1)Dk−1 Dk−2 · · · · 1
kDk Dk−1 · · · · D1

��������������
, Dk =

1
k!

��������������

H1 1 0 · · · 0
H2 H1 2 · · · 0
...

... · · · · ...

Hk−1 Hk−2 · · · · k − 1
Hk Hk−1 · · · · H1

��������������
. (3.6)

In fact this are the same formulae that relate the power-sum symmetric functions and elementary
symmetric functions.
The boost operator. In addition to the hamiltonian and momentum operator, sometimes it is
convenient to consider the operator of the Galilean boost that is defined as

B =
N∏

i=1
Q s
i .
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where the parameter s ∈ R plays the role of the velocity of the moving frame. This operator boosts
the hamiltonian to give

B−1HB = H +
s
`

P +
N s2

2`2 .

More generally, one can study the spectrum of this boosted hamiltonian, which is essentially an
admixture of H and P, but we will restrict ourselves to the spectrum of H .
The ground state. The first step towards the spectrum of the model is to find the ground state wave
function and the ground state energy. This can be done by noting that the hamiltonian (3.1) can be
represented as

H =
1
2

N∑

i=1
A†i Ai + E0 ,

where

Ai = −i~∂i − γ

2`

N∑

j,i

Qi + Qj

Qi − Qj
, A†i = −i~∂i +

γ

2`

N∑

j,i

Qi + Qj

Qi − Qj

are two hermitian conjugate operators and

E0 =
γ2

`2
N (N2 − 1)

24
. (3.7)

Since
∑N

i=1 A†i Ai is a hermitian semi-positive operator, E0 coincides with the ground state energy,
while the ground state wave function 4, is determined by a compatible system of equations

Aj∆ = 0 , j = 1, . . . , N . (3.8)

The solution of this system is a Jastrow wave function

4 =
N∏

i< j

(Qi − Qj )β
N∏

i=1
Q −(N−1)β/2
i , (3.9)

which up to a phase coincides with
∏N

i< j |Qi − Qj |β .
Note that the ground state energy admits the thermodynamic limit where the length L = 2π`

of the box (period) and the particle number N both tend to infinity, such that the particle density
D = N/L remains finite in this limit. From (3.7) for the density E0 of the ground state energy of
the we find in the thermodynamics limit

E0 = lim
N,L→∞

E0
L
=

(πγ)2

6
D3 . (3.10)

Excited states. To find the spectrumof excited states, we pass from the hamiltonian to a newoperator
H which is obtained by conjugating H with the ground state wave-function and subtracting the
ground state energy: H≡ 2`2

~2 (4−1H 4 −E0). Explicitly,

H=

N∑

i=1

(
Qi

∂

∂Qi

)2
+ β

N∑

i< j

Qi + Qj

Qi − Qj

(
Qi

∂

∂Qi
− Qj

∂

∂Qj

)
.
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This operator is invariant under the action of the symmetric group SN and its spectrum will be
spanned by symmetric polynomials of Qi. Indeed, consider the following monomial symmetric
functions

mλ =
∑

σ∈SN

Q λ1
σ(1)Q

λ2
σ(2) . . . Q λN

σ(N ) (3.11)

associated to the Young diagram λ = [λ1, λ2, λ3, . . .], where the non-negative integers λi (dominant
weights) form a weakly decreasing sequence

λ1 ≥ λ2 ≥ λ3 ≥ . . . . (3.12)

Applying the operator H to mλ yields

Hmλ = ελmλ +
∑

µ<λ

cλµmµ ,

where

ελ =
∑

j

λ
2
j + β

∑

i< j

(λi − λj ) . (3.13)

Here we have also used the notion of a dominance partial order defined on a set of partitions as

µ ≤ λ if and only if µ1 + . . . + µj ≤ λ1 + . . . + λj , for all j = 1, . . . , N .

This order is only partial because not all the partitions can be compared in this way.
Thus, H is triangular in a symmetric monomial basis and its eigenfunctions can be searched as

linear combinations of mλ with all subordinate mµ. This leads to the construction of the spectrum
in terms of symmetric Jack polynomials.

3.2 Spectrum via Jack polynomials

For a given partition λ denote by m1 multiplicity of its part 1, by m2 multiplicity of its part 2, etc.
Let us associate to λ the following number

zλ = 1m1 m1! 2m2 m2! . . . . (3.14)

With this notation we define on the space of symmetric functions the following scalar product

〈pλ, pµ〉β = δλ,µ zλ β−`(λ) , (3.15)

where `(λ) is the length of the partition λ (the number of parts). The Jack polynomials Jλ(Q ; β)
are known to be uniquely defined by the following conditions [17]

1) Jλ(Q ; β) = mλ +
∑
µ<λ uµλ(β)mµ ,

2) 〈Jλ, Jµ〉β = 0 if λ , µ ,
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where the coefficients uµλ(β) are rational functions of β. If l (λ) > N , then Jλ(Q , β) = 0. For β = 1
the Jack polynomials coincide with Schur polynomials. The Jack polynomials are orthogonal with
respect to the scalar product

( f1, f2) =
1

(2πi)N

N∏

j=1

∮

|Q j |=1

dQj

Qj
f1(Q ) f2(Q )

N∏

i< j

|Qi − Qj |2β . (3.16)

In fact, the scalar product (3.16) is proportional to (3.15). Among other properties of the Jack
polynomials the following relation is noteworthy

(∏

i

Qi

)
Jλ(Q ; β) = Jλ+1(Q ; β) , λ + 1 ≡ [λ1 + 1, λ2 + 1, . . .] . (3.17)

Finally, the Jack polynomials are the eigenstates of P and H

HJλ(Q ; β) = ελJλ(Q ; β) , PJλ(Q ; β) = pλJλ(Q ; β) ,

where eigenvalues ελ are given by (3.13) and

pλ =
N∑

j=1
λj . (3.18)

Here P = `
~ 4−1 P4 = `

~P is the operator of total momentum because P annihilates the ground
state wave function.

A simple and explicit formula for Jack polynomials is currently unknown. The reader can
consult the Table 3.1 in [9] for the list the first seven polynomials together with the corresponding
eigenvalues of the operator H. Combing all the pieces together, we obtain the following formula
for eigenfunctions of H

Ψλ(Q ) =
( N∏

i=1
Qi

)−(N−1)β/2 N∏

i< j

(Qi − Qj )β Jλ(Q ; β) . (3.19)

Quasi-momentum. The spectrum of the trigonometric model has a striking interpretation in terms
of quasi-particles which makes the integrable structure of the model manifect. Taking into account
the expression for the ground state energy, we obtain the following formula for the spectrum of the
hamiltonian (3.1)

E =
~2

2`2

N∑

j=1

(
λj + β(N + 1 − 2 j)

)
λj +

~2 β2

`2
N (N2 − 1)

24
. (3.20)

Introducing the dimensionful quasi-momenta16

pj =
~
`

(
λN+1−j +

(
j − N+1

2
)
β
)
, j = 1, . . . , N , (3.21)

16Quasi-momenta pj have the physical dimension of momentum.
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the formulas for the energy and total momentum can be written as

E =
1
2

N∑

j=1
p2
j , P =

N∑

j=1
pj , (3.22)

where they obviously coincide with the sums of energies and momenta of free non-relativistic
particles with momenta pj . For pj a selection rule applies, namely, pj+1 − pj ≥ γ/`. The formulae
for E and P hint on the degeneracy of the spectrum, as the same values of of these integrals can
be realised by different configurations of pj . It turns out that the eigenstates of the hamiltonian are
separated by the values of higher commuting charges.

Sekiguchi operators. The commuting integrals of the model are given by (3.3). Conjugating these
integrals with the ground state wave function, we get

Dk = 4−1Dk 4 . (3.23)

These newmutually commuting differential operators are known as Sekiguchi operators. They were
introduced in [18] as a one-parametric deformation of the generators of the algebra of the invariant
differential operators on symmetric spaces.

In the following it is convenient to introduce the following generating functions for Dk and Dk

D(ζ ) =
N∑

k=0
ζN−k (−1)kDk , D(ζ ) =

N∑

k=0
ζN−k (−1)kDk , (3.24)

so that D(ζ ) = 4−1D(ζ ) 4. Recall that D(ζ ) coincides with determinant (3.5). According to [18],
the function D(ζ ) has the following explicit form

D(ζ ) =
1

N∏
i< j

Qi j

∑

σ∈SN

(−1)σ
N∏

i=1
Q N−σ(i)
i

(
ζ +

γ

`

(
σ(i) − N+1

2
)
+ i~∂i

)
, (3.25)

whereSN is the symmetric group. The Jack polynomials diagonalise not only the momentum and
the hamiltonian, but also all the Sekiguchi operators, namely,

D(ζ ) · Jλ(Q ; β) = Q(λ) · Jλ(Q ; β) ,

where the eigenvalue is

Q(ζ ) =
N∏

j=1

(
ζ − ~

`

(
λj − (

j − N+1
2

)
β
))

.

Upon shifting the index j → N + 1 − j, the expression for Q(ζ ) can be rewritten in terms of the
quasi-momenta (3.21) as

Q(ζ ) =
N∏

j=1
(ζ − pj ) . (3.26)

The polynomial Q(ζ ) is an example of a Baxter polynomial. Its roots pj coincide with the allowed
values of quasi-momentum.
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4. Quantum integrability II: Scattering and Bethe Ansatz

4.1 Scattering in classical integrable models

We start with scattering in classical mechanics. The simplest situation corresponds to a single
non-relativistic particle scattering elastically off a fixed target modelled by a potential with a finite
interaction range. Excluding from consideration bounded orbits which might exist for attractive
potentials, far away from an interaction region asymptotic trajectories are straight lines.

q(t) → q in
out

(t) ≡ q∓ + p∓t , t → ∓∞ , (4.1)

where coordinates q± and momenta p± = p(±∞) constitute the scattering data and a transformation
from (q−, p−) to (q+, p+) defines a classical scattering operator, also known as classical S-matrix.
Scattering of several particles interacting via an admissible (see below) pair-wise potential is
considered in a similar manner.

To understand what is special about scattering processes in an integrable model, we consider
the example of N particles of equal mass m = 1 governed by an integrable hamiltonian of the type
(1.52) with an admissible potential v that is symmetric v(q) = v(−q), repulsive and impenetrable,
and falls off sufficiently rapidly with the distance between particles, to guarantee the existence
of an asymptotic region. Examples satisfying these requirements are provided by rational or
hyperbolic CMS models, Classical integrability for these models follows from the existence of the
Lax representation with the matrix L given by

L =
N∑

j=1
pjEj j +

N∑

i< j

u(qi j )Ei j (4.2)

with an appropriate function u(q).

Non-diffractive scattering. Since the potential is repulsive and impenetrable, particles cannot
overtake each other and one can label them according to the order

q1(t) < q2(t) < . . . < qN (t) . (4.3)

Since these inequalities are valid for any t, from asymptotic conditions (4.1) one obtains the
following orderings of the asymptotic momenta

p−1 > p−2 > . . . > p−N ,

p+1 < p+2 < . . . < p+N .

Since |qi − qj | = O(t) as t → ±∞, the Lax matrix in the limits t → ±∞ reduces to a diagonal matrix
that supports the set of eigenvalues λ j of L. These eigenvalues are integrals of motion, and if we
set p−j = λ j then,

λ1 > λ2 > . . . > λN .

Obviously, the same order of eigenvalues must be found at t = +∞, which is only possible if L(+∞)
has the same eigenvalues as L(−∞) but in the reversed order:

L(−∞) = diag(p−1 , . . . , p−N ) , L(+∞) = diag(p+N, . . . , p+1 ) .
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This leads to a simple relation between the scattering data:

p+N+1−j = p−j . (4.4)

Thus, the set of incoming asymptotic momenta {p−i } coincides with the set of outgoing ones {p+i }.
This fundamental result is usually referred to as conservation of asymptotic momenta and the
corresponding scattering process is described as non-diffractive. Relations (4.4) are independent of
the value of the coupling constant that governs the strength of the potential.

Classical phase shift. Due to the coincidence of the sets of incoming and outgoing momenta,
we can reinterpret the scattering picture in a different way. Namely, we can associate to each
particle a unique asymptotic momentum and assume that the order of particles is the same as that
of their momenta. In particular, before scattering the fastest particle is the most left one, and
after the scattering it reappears on the right of all the others, as if interactions would be completely
absent. This is the so-called transmission representation of scattering in comparison to the reflection
representation we started with. From the transmission point of view, individual particles always
keep their asymptotic momenta, while scattering shows up in the discontinuity δj of the asymptotic
coordinates

δj = q+N+1−j − q−j
= lim

t→+∞
(
qN+1−j (t) − qj (−t) − 2p−j t

)
.

(4.5)

The quantity δj , also known as the classical phase shift, completely characterises the scattering
process: it shows how much the jth particle has advanced in comparison to a freely moving particle
with momentum pj . The simplest case is the two-body problem, when one considers scattering of
two particles giving rise to the corresponding phase shifts δ1 and δ2. In this case there is a general
formula for the two-body phase shift δ1 ≡ δ(k), where k = p−1 − p−2 > 0, which expresses the shift
via the potential [19]

δ(k) = x0(k) −
∫ ∞

x0 (k)
dx

*..,
1√

1 − 4v(x)
k2

− 1
+//-
. (4.6)

Here x0 = x0(k) is found from 4v(x0) = k2. The shift depends on the difference k of asymptotic
momenta but not on the asymptotic coordinates q−i . It also follows from (4.6) that δ(k) is an even
function of k. The detailed derivation of (4.6) can be found in [9]. As discussed in this book, for
the rational and hyperbolic CMS models the corresponding phase shifts are

δ1 = 0 = − δ2 (rational) ,

δ1 = log
(
1 +

γ2

k2

)
= − δ2 (hyperbolic) ,

(4.7)

If we restore the physical dimensions and the dependence on `, the answer for the hyperbolic case
δ(k) ≡ δ1 reads as

δ(k) = ` log
(
1 +

γ2

k2`2

)
. (4.8)
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Now we can discuss δj for the case of many particles.

Factorisation of the classical S-matrix Recall that the hamiltonian of a dynamical system gives
rise to a one-parametric group Ut of canonical transformations with time t playing the role of
parameter. For any function f (p, q) on the phase space its time evolution f (p, q, t) ≡ f (p(t), q(t))
is given by

f (p, q, t) = (Ut f )(p, q) = et {H, · } ◦ f (p, q) .

We assuming the existence of in- and out-asymptotics, namely,

et {H, · } ◦ (pi, qi) → (p±i , p±i t + q±i ) , t → ±∞ , (4.9)

where the variables (p±i , q
±
i ) define the asymptotic phase spaces

P± = {(p±, q±) ∈ R2N , p±1 ≶ p±2 ≶ . . . ≶ p±N } . (4.10)

Since the Poisson brackets between canonical variables are preserved under the time evolution,
the asymptotic data (p−i , q

−
i ) and (q+i , p+i ) also form canonical pairs, i.e. the asymptotic spaces

are symplectic. This allows one to define the classical analogue of the quantum-mechanical wave
operators Ω± : P∓ →P ,

Ω± = lim
t→∓∞ e−t {H, · } ◦ et {H

∓
0 , · } , (4.11)

where H±0 =
1
2
∑N

j=1(p±j )2 are free hamiltonians. The wave maps are canonical and they are used to
construct the classical S-matrix

Sclass = Ω
−1
− Ω+ : P− →P+ , (4.12)

which is also a canonical transformation.
Phase shifts δj formany-body scattering can be found by relying on canonicity of the asymptotic

phase spaces and the relations (4.4). One has

δi j = {p+N+1−i, q
+
N+1−j } = {p−i , q−j + δj } = δi j +

∂ δj

∂q−i
.

Hence, ∂ δj/∂q−i = 0, i.e. δ j does not depends on q− and, therefore, it can be computed by arranging
the asymptotic data q−1 , . . . , q

−
N into a special configuration such that collisions take place pairwise,

with asymptotically large times in between of any two subsequent collisions. This shows that the
multi-body phase shift can be found by simply summing up the two-body phase shifts arising from
collisions of j’s particle with the rest

δj = q+N−j+1 − q−j =
∑

k> j

δ(p−j − p−k )

︸             ︷︷             ︸
right particles

−
∑

k< j

δ(p−j − p−k )

︸             ︷︷             ︸
left particles

, (4.13)

see Fig. 2 which describes the corresponding kinematic configurations before and after scattering.
This result (4.13) is a consequence of the existence of a complete set of integrals of motion
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·
j0s particle

(j � 1) particles (N � j) particles ·
j0s particle

(j � 1) particles(N � j) particles

Before scattering After scattering

Figure 2: Rearrangement of particles in the scattering process.

responsible for (4.4). There are no separate three- and higher-body events and the multi-particle
scattering process is completely characterised by the two-body phase shift.

To determine the classical S-matrix, we consider the generating function Φ(q−, p+) of the
canonical transformation (q−i , p−i ) → (q+i , p+i )

p−i =
∂Φ(q−, p+)

∂q−i
= p+N+1−i , q+i =

∂Φ(q−, p+)
∂p+i

= q−N+1−i + δN+1−i , (4.14)

where, according to (4.13),

δN+1−i =
∑

k<i

δ(p+i − p+k ) −
∑

k>i

δ(p+i − p+k ) .

Integrating (4.14), one gets

Φ(q−, p+) =
N∑

i=1
q−i p+N+1−i +

N∑

i< j

θ(p+i − p+j ) , (4.15)

where θ(k) is an integrated phase shift

θ(k) = k x0(k) − k
∫ ∞

x0 (k)
dx *,

√
1 − 4v(x)

k2 − 1+- ,
∂θ

∂k
= δ(k) . (4.16)

According to this formula, θ(k) is an odd function of k. Were the theory free, the relation
between P+ and P− would reduce to relabelling of particles described by the generating function
Φ0(q−, p+) =

∑N
i=1 q−i p+

N+1−i. The non-trivial part of the generating function is, therefore, the
classical S-matrix

Scl =

N∑

i< j

θ(p+i − p+j ) . (4.17)

From the point of view of the correspondence between classical and quantum mechanics, this S-
matrix is the leading term in the semi-classical expansion of the phase θ of the quantum-mechanical
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wave function Ψ = ae
i
~ θ in powers of ~. The fact that this S-matrix factorises into the sum of

its elementary two-body phase shifts is a deep consequence of integrability and it persists in the
quantum theory as well.

4.2 Factorisation of scattering matrix

Here we consider the scattering problem in quantum mechanics. Our starting point is the
Schrödinger equation for the multi-body wave function Ψ(q1, . . . , qN )

− 1
2m

N∑

i=1

∂2

∂q2
i

Ψ(q1, . . . , qN ) +
∑

i,j

v(qi − qj )Ψ(q1, . . . , qN ) = EΨ(q1, . . . , qN ) . (4.18)

The potential v is taken to be admissible and translation invariant, thereby the total momentum P is
conserved; ~ = 1. We also assume that particles are distinguishable, so that the wave function does
not have any particular symmetry under permutations of coordinates.

Bethe wave function. If a quantum model is integrable, we can search for the wave function as a
common eigenstate of a family17 of N pair-wise commuting operators Hk

HkΨ(q1, . . . , qN ) = hkΨ(q1, . . . , qN ) , k = 1, . . . , N . (4.19)

When separation between any two neighbouring particles is large, the potential terms in Hk are
negligibly small and can be ignored, so that Hk turn into the conservation laws H (0)

k
of the free

theory
H (0)
k
=

∑

j

(−i∂j )k .

Considering a kinematic domain (sector) where particles are far apart according to the pattern

q1 < q2 < . . . < qN , (4.20)

a common eigenstate of the free problem H (0)
k
Ψ = hkΨ is elementary to guess

Ψ ∼ eip1q1+...ipN qN . (4.21)

Here the numbers pj are asymptotic momenta which satisfy a system of N polynomial equations

N∑

j=1
pkj = hk . (4.22)

In particular, the energy and momentum are

E =
1
2

N∑

j=1
p2
j , P =

N∑

j=1
pj . (4.23)

We assume that for given hk this system has a unique solution where momenta pj respect the
ordering

p1 > p2 > . . . > pN . (4.24)

17We assume that the hamiltonian H and the total momentum P belong to this family.
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Then any other solution of (4.22) will be obtained by permutations of the set (4.24). This implies
that the general solution of the free theory in the kinematic domain (4.20) will be given by a
superposition of free waves characteristic to solutions of scattering type

Ψ(q1, . . . , qN ) =
∑

τ∈SN

A(τ)eiq1pτ (1)+...+iqN pτ (N ) , (4.25)

where the sum runs over permutations τ from the symmetric group SN . For the asymptotic
expression (4.25) the amplitudes A(τ) are arbitrary.

In general, the configuration spaceRN can be divided into N! disconnected sectors, each sector
corresponds to a certain ordering of coordinates

qσ(1) < qσ(2) < . . . < qσ(N ) , (4.26)

where the latter are labelled by permutations σ ∈ SN . The set {pj } of asymptotic momenta must
be the one and the same for any asymptotic domain because the spectral invariants hk are globally
defined. The asymptotic wave function in the σ-sector (4.26) is a superposition of plane waves

Ψ(q1, . . . , qN |σ) =
∑

τ∈SN

A(σ |τ)eiqσ (1)pτ (1)+...+iqσ (N )pτ (N ) , (4.27)

where the complex amplitudes A(σ |τ) are combined into a N! × N! matrix with undetermined
coefficients. To deal with all sectors at once, it is convenient to introduce the following function

Θ
(
qσ(1) < . . . < qσ(N )

)
=

N−1∏

i=1
Θ

(
qσ(i+1) − qσ(i)

)
, (4.28)

where Θ(x) is the Heaviside Θ-function. Multiplying (4.27) with (4.28) to account for the sector
restrictions, we then sum over all sectors to get

Ψ(q1, . . . , qN ) =
∑

σ∈SN

∑

τ∈SN

A(σ |τ)eiqσ (1)pτ (1)+...+iqσ (N )pτ (N )Θ
(
qσ(1) < . . . < qσ(N )

)
. (4.29)

The expression (4.29) is called the Bethe wave function and it was introduced by C. N. Yang [20] .
The Bethe wave function describes an asymptotics of the multi-body wave function in inte-

grable models. The fact that any asymptotic wave is determined by the same set of momenta,
up to permutations, means that the scattering process is non-diffractive. Three- and higher-body
events that would lead to a continuous redistribution of momenta are prohibited by a sufficiently
large number of conservation laws. The coefficients A(σ |τ) should be recovered by considering
asymptotics of the exact solution of (4.18). Fortunately, there is a way to find these coefficients
from the asymptotic data of the two-body problem, which brings to light the concept of S-matrix.

S-matrix. Consider two sectors which differ only by the order of two neighbouring particles qi and
qj , so that in the first sector qi < qj and qi > qj in the second. These sectors are neighbours and
have the hyperplane qi = qj as a common boundary. Extrapolation of the wave function through this
boundary can always be done by keeping all the other coordinates far away from qi ≈ qj and from
each other. Physically, this extrapolation corresponds to a two-body scattering event. Starting from
any sector, one can obviously reach any other by passing through the adjacent sectorial boundaries,
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albeit not in a unique way. The neighbouring sectors are thus connected by simple transpositions
αj ∈ SN , j = 1, . . . , N − 1. The relation between the corresponding amplitudes can be described
as follows. We introduce a column vector Φ(τ) which comprises the amplitudes in all the sectors
corresponding to the same permutation τ of momenta

Φ(τ) ≡ {A(σ |τ), σ ∈ SN } . (4.30)

The following connection formula that expresses the scattering of two neighbouring particles at qj

and qj+1 particles with momenta pτ( j) and pτ( j+1) is

Φ(αjτ) = Yj (pτ( j), pτ( j+1))Φ(τ) , (4.31)

where we introduced Yang’s scattering operators Yj

Yj (p1, p2) = A(p1, p2) 1 + B(p1, p2) π(αj ) , (4.32)

where j = 1, . . . , N − 1. Here π is the left regular representation of SN , the functions A and B are
the reflection and transmission coefficients of the two-body scattering problem. Yang’s operator Yj
is a N! × N! matrix which acts on the vector Φ(τ) by the usual matrix multiplication. Equation
(4.31) can be called a connection formula as it can be used to connect any two sectorial amplitudes
and eventually to express them all via Φ(e), where e is the identity permutation. For the proof of
(4.31) the reader can consult, for instance, [9].

More generally, one introduces the two-body S-matrices

Si j (pi, pj ) = B(pi, pj ) 1 + A(pi, pj ) π(αi j ) (4.33)

where αi j is a transposition, in particular, αi ≡ αii+1. The relation between Yang’s operators and the
S-matrices is Yj = π(αj )Sj j+1. Further we note that the defining relations of the symmetric group
impose non-trivial conditions on Yang’s operators and on S-matrices. In particular, the S-matrix
must satisfy

S12(p1, p2)S21(p2, p1) = 1 (4.34)

and

S12(p1, p2)S13(p1, p3)S23(p2, p3) = S23(p2, p3)S13(p1, p3)S12(p1, p2) . (4.35)

The last relation is the Yang-Baxter equation for the two-body S-matrix. It expresses the equivalence
of two different ways to factorise a three-body S-matrix S123 into a product of two-body S-matrices.
Thus, integrability implies consistent factorisation of scattering process and the corresponding S-
matrix in a sequence of two-body events and S-matrices, giving rise to the notion of Factorised
Scattering Theory [21].

Thus, combing ansatz (4.28) with the description of scattering in terms of transmission and
reflection coefficients allows one to determine all the amplitudes in (4.28) via Φ(e). The amplitude
column Φ(e) remains undetermined which reflects the absence of symmetry of the wave function
for distinguishable particles. For the ultimate determination of the transmission and reflection
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coefficients one needs to solve the Schrödinger equation for two particles, the latter being the one-
dimensional problem due to translation invariance. Below we illustrate the concept of the Bethe
wave function and computation of the reflection and transmission coefficients on two examples: the
Lieb-Liniger model for distinguishable particles (the delta-interaction model) and the CMS models
(rational and hyperbolic).

Lieb-Liniger model for distinguishable particles. As an explicit realisation of the Bethe wave
function construction above, we consider the two-body problem for the Lieb-Liniger model de-
scribed by the Hamiltonian (1.54). The Bethe wave function (4.29) for the two-particle case reads
as

Ψ(q1, q2) = Θ(q1 < q2)
{
A(12|12)ei(p1q1+p2q2) +A(12|21)ei(p2q1+p1q2)

}
+ Θ(q2 < q1)

{
A(21|12)ei(p1q2+p2q1) +A(21|21)ei(p2q2+p1q1)

}
.

(4.36)

Thus, we have four amplitudes involved. Separating the center of mass

q = q1 − q2, Q = q1 + q2 ,

so that

q1 =
Q + q

2
, q2 =

Q − q
2

,

we get

Ψ(q1, q2) = e
i
2 (p1+p2)Qψ(q) , (4.37)

where

ψ(q) = θ(−q)
{
A(12|12)e

i
2 (p1−p2)q

+A(12|21)e−
i
2 (p1−p2)q

}

+ θ(q)
{
A(21|12)e−

i
2 (p1−p2)q

+A(21|21)e
i
2 (p1−p2)q

}
.

(4.38)

Continuity of ψ(q) at 0 requires

A(12|12) +A(12|21) = A(21|21) +A(21|21) . (4.39)

The left and right derivatives at zero are

ψ ′(+0) = − i
2

(p1 − p2)A(21|12) +
i
2

(p1 − p2)A(21|21) ,

ψ ′(−0) =
i
2

(p1 − p2)A(12|12) − i
2

(p1 − p2)A(12|21) .

The wave function for the relative motion is the subject of the following Schrödinger equation

−ψ ′′(q) + v(q)ψ(q) =
k2

4
ψ(q) , k = p1 − p2 . (4.40)

For the case at hand the potential is v(q) = κδ(q) and we get

−ψ ′′(q) + κδ(q)ψ(q) =
k2

4
ψ(q) . (4.41)
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We then integrate both sides of equation (4.41) over a small segment [−ε, ε] and then send ε → 0.
Due to continuity of the wave function, we get an equation for the discontinuity of its derivative at
the origin

ψ ′(+0) − ψ ′(−0) = κψ(0) . (4.42)

Substituting here the derivatives found above, we get

i
2

(p1 − p2)
{
−A(21|12) +A(21|21) −A(12|12) +A(12|21)

}
= κ

{
A(12|12) +A(12|21)

}
. (4.43)

By using (4.39) we first remove from this equation A(21|21)

i
2

(p1 − p2)
{
−A(21|12) +�����A(12|12) +A(12|21) −A(21|12) −�����A(12|12) +A(12|21)

}
= κ

{
A(12|12) +A(12|21)

}
,

so that

A(12|21) −A(21|12) = −x12
{
A(12|12) +A(12|21)A

}
, (4.44)

where we have introduced

x12 =
iκ

p1 − p2
. (4.45)

The last equation can be solved for A(12|21)

A(12|21) = − x12
1 + x12

A(12|12) +
1

1 + x12
A(21|12) . (4.46)

Now we look at (4.43) again and remove this time A(12|21) by using (4.39)

i
2

(p1 − p2)
{
−�����A(21|12) +A(21|21) −A(12|12) +�����A(21|12) +A(21|21) −A(12|12)

}
= κ

{
A(21|21) +A(21|21)

}
.

This gives

A(21|21) = − x12
1 + x12

A(21|12) +
1

1 + x12
A(12|12) . (4.47)

Equations (4.46) and (4.47) can be compactly written as

Φ(21) = YΦ(12) , Y = − x12
1 + x12

1 +
1

1 + x12
π12 , π12 = *,

0 1
1 0

+- , (4.48)

where Y ≡ Y1 and Φ(τ) are columns of A(σ |τ), namely,

Φ(12) = *,
A(12|12)
A(21|12)

+- , Φ(21) = *,
A(12|21)
A(21|21)

+- . (4.49)
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Comparing (4.48) to the general form (4.32), we read off the reflection and transmission coefficients
for the Lieb-Liniger model

A = − iκ
p1 − p2 + iκ

, B =
p1 − p2

p1 − p2 + iκ
. (4.50)

The vector Φ(21) is fully determined by Φ(12), on the other hand Φ(12) = Φ(e) remains arbitrary,
i.e. amplitudes in different sectors remain unrelated.

What is remarkable is that with the ansatz (4.36) and coefficients (4.50) we were able to obtain
the exact rather than asymptotic solution of the Schrödinger equation. This phenomenon happens
due to the extremely short-range behaviour of the potential and therefore is peculiar to this integrable
model.

Hyperbolic CMS model. Writing the two-body wave function of the hyperbolic CMS model as
(4.37), for ψ(q) we have the following Schrödinger equation (` = 1)

−ψ ′′(q) +
γ(γ − 1)

4 sinh2 1
2 q
ψ(x) =

k2

4
ψ(q) . (4.51)

The potential is repulsive for β > 1. Since it is also impenetrable we are looking for the solution
that vanishes at q = 0. We can thus solve the problem for q > 0 with the condition ψ(0) = 0 and
then extend the solution for negative q in two possible ways ψ(−q) = ±ψ(q) corresponding to the
symmetric or anti-symmetric wave function. For the symmetric wave function we deal with hard
core bosons and for the anti-symmetric one with usual fermions. The solution for q > 0 which
satisfies the required boundary condition reads

ψ(q) =
(
eq/2 − e−q/2

)−ik
2F1

(
γ + ik, 1 − γ + ik, 1 + ik;

1
1 − eq

)

− eikq/2
Γ(1 + ik)Γ(γ − ik)
Γ(1 − ik)Γ(γ + ik) 2F1

(
γ, 1 − γ, 1 − ik;

1
1 − eq

)
,

(4.52)

where 2F1(a, b, c; z) is the hypergeometric function. In the limit q → +∞ one find

ψ(q) → e−ikq/2 − Γ(1 + ik)Γ(γ − ik)
Γ(1 − ik)Γ(γ + ik)

eikq/2 .

Comparing this asymptotics with the second line in (4.38), we get

A(21|12) = 1 , A(21|21) = −Γ(1 + ik)Γ(γ − ik)
Γ(1 − ik)Γ(γ + ik)

. (4.53)

We further have A(12|12) = ±A(21|12) and A(12|21) = ±A(21|21), where signs “ + ” and “ − ”
correspond to the symmetric and anti-symmetric wave functions, respectively. From (4.49) for both
symmetric and anti-symmetric wave functions, one concludes that

Φ(21) =
A(21|21)
A(21|12)

Φ(12) , (4.54)

so that there is non-trivial reflection coefficient, which is a pure phase,

A = −Γ(1 + ik)Γ(γ − ik)
Γ(1 − ik)Γ(γ + ik)

= −e−iθ , (4.55)
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while the transmission coefficient B vanishes. Restoring all the parameters by substitutions γ →
γ/~, k → k → k`/~, θ → θ/~, we obtain for the scattering phase

θ = i~ log
[
Γ
(
1 + i k`~

)
Γ
(γ
~ − i k`~

)

Γ
(
1 − i k`~

)
Γ
(γ
~ + i k`~

)
]
. (4.56)

There are two interesting limiting cases of this formula. Firstly, one can consider the rational limit
` → ∞. In this limit one gets θ = π(γ −~)sign(k). From here δ(k) = θ ′(k) = π(γ −~)δ(k) which
vanishes for k , 0, i.e. we observe the same result as for the classical theory where the phase shift
was found to vanish. Secondly, there is a classical limit corresponding to taking the action variable
k` to be large in comparison to ~. In this limit on finds

θ = k` log
(
1 +

γ2

k2`2

)
+ 2γ arctan

k`
γ
.

which is the integrated phase shift corresponding to δ(k) in (4.8).
Thus, for the hyperbolic (and rational) CMS model the exact two-body wave function (4.52)

for intermediate values of its arguments is rather intricate but is well approaching the Bethe form
of the wave function in the asymptotic limit.

4.3 Bethe-Yang equations

To describe thermodynamics of an integrable model, we need to consider a system of N interacting
particles confined in a one-dimensional box. If the size L of the box is large enough one can
still well separate particles to apply the concept of the Bethe wave function. However, the new
feature is that to account for the box boundaries one needs to subject the wave function to certain
boundaries conditions, of which the periodic boundary conditions is the simplest choice. Thus, the
wave function Ψ depending on variables 0 ≤ qi ≤ L is now required to satisfy

Ψ(q1, . . . , qj = 0, . . . , qN ) = Ψ(q1, . . . , qj = L, . . . , qN ) , ∀ j . (4.57)

For the Bethe wave function (4.29) this yields

∑

σ∈SN
σ(1)=j

∑

τ∈SN

A(σ |τ)e
i

N∑
k=2

qσ (k )pτ (k )
Θ

(
qσ(2) < . . . < qσ(N )

)

=
∑

σ∈SN
σ(N )=j

∑

τ∈SN

A(σ |τ)eiLpτ (N ) e
i

N∑
k=1

qσ (k )pτ (k )
Θ

(
qσ(1) < . . . < qσ(N−1)

)
.

(4.58)

where on the right hand side in the exponent one has qσ(N ) = qj = 0. To be able to compare these
expressions, we introduce the cyclic permutation ξ ∈ SN which in the two line notation reads as

ξ = αN−1 . . . α1 =

(
1
2

2
3
· · · N − 1

N
N
1

)
(4.59)
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and change on the right hand side of (4.58) the summation variables σ, τ as σ → ξσ and τ → ξτ.
Since σ obeys σ(1) = j, then ξσ(N ) = σ(ξ(N )) = σ(1) = j. This yieds

∑

σ∈SN
σ(1)=j

∑

τ∈SN

A(σ |τ)e
i

N∑
k=2

qσ (k )pτ (k )
Θ

(
qσ(2) < . . . < qσ(N )

)

=
∑

σ∈SN
σ(1)=j

∑

τ∈SN

A(ξσ |ξτ)eiLpξτ (N ) e
i

N∑
k=2

qσ (k )pτ (k )
Θ

(
qσ(2) < . . . < qσ(N )

)
.

(4.60)

Here pξτ(N ) = pτ(ξ(N )) = pτ(1). From (4.60) it follows that

A(σ |τ) = A(ξσ |ξτ)eiLpτ (1) . (4.61)

This is a requirement on the coefficients of the asymptotic wave function in order for the latter to
satisfy periodic boundary conditions. Invoking the left regular representation π of SN , equations
(4.61) can be written as conditions for the vector Φ(τ) defined in (4.30):

π(ξ)Φ(τ) = eiLpτ (1)Φ(ξτ) . (4.62)

Obviously, (4.62) should be satisfied for any τ. It is convenient to consider a set {τj }Nj=1, where

τj ≡ α1 . . . αj−1 =

(
1
j

2
1

3
2
· · · j

j − 1
j + 1
j + 1

· · · N
N

)
, τ1 = e ,

so that ξτj = αN−1 . . . αj . With this choice τ(1) = j and (4.62) boils down to

π(αN−1 . . . α1)Φ(α1 . . . αj−1) = eiLp j Φ(αN−1 . . . αj ) . (4.63)

Applying to both sides of this expression the connection formula (4.31), one gets

π(αj−1) . . . π(α1) Y1(p1, pj ) . . .Yj−1(pj−1, pj )Φ(e)

= eiLp j π(αj ) . . . π(αN−1)YN−1(pj, pN ) . . .Yj (pj, pj+1)Φ(e) .

Using the definition (4.33) of the two-body S-matrix the last expression can be cast in the form

Sj+1 jSj+2 j . . . SN j · S1j . . . Sj−1 j Φ(e) = eiLp j Φ(e) . (4.64)

Introduce the following matrices

Tj = Sj+1 jSj+2 j . . . SN j · S1j . . . Sj−1 j . (4.65)

Equations (4.64) are equivalent to the statement that |Φ〉 ≡ Φ(e) is a common eigenvector of N
matrix operators Tj

Tj |Φ〉 = Λj |Φ〉 , (4.66)

where j = 1, . . . , N . These are matrix Bethe-Yang equations. Once a common eigenvalue, which is
a function of momenta, is found, one is left to solve a system of scalar Bethe equations

Λj = eiLp j , (4.67)
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to determine the momenta pj . Equations (4.67) can be thus considered as quantisation conditions
for particle momenta that arise in a large but finite volume.

Compatibility of the system (4.66) requires that matrices Tj for various j pair-wise commute.
They do indeed so as a consequence of the condition (4.34) and the Yang-Baxter equation (4.35).
Demanding the Bethe wave function to be of the symmetry type described by the Young diagram
λ, we should also require the vector |Φ〉 to transform in the same representation. Correspondingly,
the scattering operators and the operators Tj are also restricted to λ. The problem therefore
reduces to solving the system (4.66) for a given irreducible representation ofSN with a subsequent
reconstruction from this solution of the corresponding Bethe wave function.

In the case of scalar S-matrices, where |Φ〉 is one-dimensional, the diagonalisation problem of
Tj does not arise. For multi-dimensional |Φ〉 to find Λj one has to rely on special diagonalisation
techniques such as, for instance, the nested Bethe ansatz. Below we consider only the simplest
one-dimensional examples.

Lieb-Linigermodel. The two-body S-matrix for the Lieb-Liniger model with vector |Φ〉 in the irrep
λ ofSN is Si j = B 1+ Aπλ(αi j ), where A and B are the reflection and and transmission coefficients
(4.50). There are two representations for which S is scalar: the anti-symmetric representation
λ = [1N ] corresponding to fermions and symmetric representation λ = [N] corresponding to
bosons.

1) Case of fermions. For λ = [1N ] one has πλ(αi j ) = −1 for any αi j , so that S = B − A = 1 and
Λj = 1 for any j. As a result, equations (4.67) become the familiar quantisation condition
eip jL = 1 for momenta of free fermions put on a circle of length L. To find the wave function,
we notice that Yj = −1 for this case. Therefore, from (4.31) we obtain the following equation

Φ(αjτ) = YjΦ(τ) = −Φ(τ),

which is solved as Φ(τ) = sign(τ)Φ(e). Since Φ(e) belongs to the anti-symmetric irrep
λ = [1N ], we haveΦ(e) = A(σ |e) = sign(σ−1)A(e|e). Up to an overall normalisation factor
A(e|e), the Bethe wave function (4.27) is then given by the Slater determinant

Ψ{p j } (q1, . . . , qN ) =
∑

τ∈SN

sign(σ−1τ)eiqσ (i)pτ (i) = det
(
eiqip j

)
.

2) Bose gas. For λ = [N] one has πλ(αi j ) = 1 for any αi j , so that S = A + B which explicitly is

S(p1, p2) =
p1 − p2 − iκ
p1 − p2 + iκ

, κ > 0 . (4.68)

The Bethe equation (4.67) reduce to

eip jL =

N∏

k,j

S(pk, pj ) =
N∏

k,j

pj − pk + iκ
pj − pk − iκ

. (4.69)

This set of N equations determine the allowed values of the particle momenta in this
model.The vector Φ in (4.62) is one-dimensional, i.e. the amplitude A(σ |τ) does not
depend on σ. From (4.31) we then have

A(αjτ) =
pτ( j) − pτ( j+1) − iκ
pτ( j) − pτ( j+1) + iκ

A(τ) .
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The last equation has a unique, up to an overall normalisation, which we pick up to produce
a solution

A(τ) = sign τ
∏

i< j

(
pτ(i) − pτ( j) + iκ

)
.

Substituting this expression into the Bethe wave function (4.29), we find

Ψ(q1, . . . , qN ) =
∑

σ∈SN

∑

τ∈SN

e
i

N∑
k=1

qσ (k )pτ (k )

× sign τ
∏

i< j

(
pτ(i) − pτ( j) + iκ

) N−1∏

i=1
Θ

(
qσ(i+1) − qσ(i)

)
.

Using the invariance of the scalar product and making the shift τ → στ, after which the sum
over σ can be performed with the following result

Ψ{p j } (q1, . . . , qN ) =
N∏

i< j

(pi − pj )
∑

τ∈SN

e
i

N∑
k=1

qk pτ (k )
N∏

i< j

[
1 − iκ ε (qi − qj )

pτ(i) − pτ( j)

]
.

The wave function is parametrised by a set of N momenta {pj } which was reflected in its
notation above. The function is symmetric under permutations of coordinates and anti-
symmetric under permutations of momenta, so that it vanishes if any two momenta coincide.
This result for the Bose gas is exact [22].

Rational CMS model. Second, we consider the rational CMS model for which the Bethe-Yang
equations in the repulsive regime can be solved exactly. For this model the phase shift θ is given by
θ(k) = π(γ − ~)sign(k). The S-matrix reduces to the reflection amplitude S = A · πλ = −e−iθ · πλ,
where πλ = 1 for bosons in the symmetric, λ = [N], representation and πλ = −1 for fermions in the
anti-symmetric, λ = [1N ], representation. Accordingly, the Bethe equations (4.67) are

e
i
~ p jL = (−1)(N−1)σ

N∏

k,j

eiπ (β−1)sign(p j−pk ) , β =
γ

~
, (4.70)

where σ = 0 for fermions and σ = 1 for bosons and we restored the the Planck constant ~. Equation
(4.70) can be solved by passing to its logarithmic version

pj =
2π~Ij

L
+
π~(β − 1)

L

N∑

k,j

sign(pj − pk ) , j = 1, . . . , N , (4.71)

where the numbers Ij = n j +
N−1

2 σ, n j ∈ Z, arise from the phase ambiguity. They are integers for
fermions for bosons with N odd, and half-odd integers for bosons with N even. It is convenient to
order momenta as

p1 < . . . < pN . (4.72)
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According to this ordering, pk < pj for k = 1, . . . , j − 1, and pk > pj for k = j + 1, . . . , N . Then,
summing up in (4.71), we find

pj =
2π~ Ij

L
+

2π~(β − 1)
L

(
j − N + 1

2

)
, (4.73)

The distinguished case β = 1 corresponds to free fermions or hard-core bosons. For this case the
particle momenta are quantised as pj = 2π~Ij/L, where Ij are distinct (half)-integers satisfying
I1 < . . . < IN . Introducing a reduced length parameter ` = L/2π, we can write the formula (4.73)
as

pj =
~
`

(
Ij + N+1

2 − j + β( j − N+1
2 )

)
. (4.74)

A crucial observation is that this formula coincides with the expression for the quasi-momenta
(3.21) of the trigonometric CMS model, provided we make the following identification of quantum
numbers Ij with integers λk parametrising Young diagrams

λN+1−j = Ij +
N + 1

2
− j .

The ground state of the trigonometric model has all λ vanishing, which gives Ij = j − N+1
2 and

pj =
γ
` ( j − N+1

2 ), N odd, for the ground state. The expressions for the total energy and momentum
written in terms of pj are the same for both models, see (3.22). In the trigonometric model pj is a
quasi-momentum and in the rational model it is an asymptotic momentum. Thus, solutions of the
Bethe Ansatz equations for the rational CMS model yield the exact spectrum of its trigonometric
(finite-size) counterpart. It is worth pointing out that while for the trigonometric model the length
parameter L = 2π` (the period) occurs directly in the hamiltonian, for the rational model it enters
the spectrum only through the Bethe equations that follow from the periodicity condition imposed
on the wave function.

5. Two-dimensional integrable PDEs

So far we dealt with systems with a finite number of degrees of freedom. In the rest of these lectures
we will take a brief look at some interesting examples of infinite-dimensional hamiltonian systems
which appear to be integrable.

Remarkably, there exist certain partial differential equations for functions depending on two
variables (x, t), which can be treated as integrable hamiltonian systems with infinite number of
degrees of freedom. Examples include

• The Korteweg-de-Vries (KdV) equation

∂u
∂t
= 6uux − uxxx .

• The non-linear Schrodinger equation

i
∂ψ

∂t
= −ψxx + 2κ |ψ |2ψ ,

where ψ = ψ(x, t) is a complex-valued function.
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• The Sine-Gordon (SG) equation

∂2φ

∂t2 −
∂2φ

∂x2 +
m2

β
sin βφ = 0

• The classical Heisenberg magnet
∂~S
∂t
= ~S × ∂

2~S
∂x2 ,

where ~S(x, t) lies on the unit sphere in R3.

The complete specification of each model requires also boundary and initial conditions. Among
the important cases are

1) Rapidly decreasing case. We impose the condition that

ψ(x, t) → 0 for |x | → ∞

sufficiently fast, for instance, ψ(x, t) belongs to the Schwarz space L (R1), that is ψ is a
differentiable function which vanishes faster than any power of |x |−1 for |x | → ∞.

2) Periodic boundary conditions. Here we require that ψ is differentiable and satisfies the
periodicity requirement

ψ(x + 2π, t) = ψ(x, t) .

A characteristic feature of the above equations that they have solutions of a special type, the
so-called solitons. The soliton was first discovered by accident by the naval architect, John Scott
Russell, in August 1834 on the Glasgow to Edinburg channel. The modern theory originates from
the work of Kruskal and Zabusky in 1965 [23].

5.1 Soliton solutions

Here we discuss the simplest cnoidal wave type (periodic) and also one-soliton solutions of the
KdV and SG equations.

Korteweg-de-Vries cnoidal wave and soliton. By rescaling of t, x and u one can bring the KdV
equation to the canonical form

ut + 6uux + uxxx = 0 .

We will look for a solution of this equation in the form of a single-phase periodic wave of a
permanent shape

u(x, t) = u(x − vt) ,

where v = const is the phase velocity. Plugging this ansatz into the equation we obtain

−vux + 6uux + uxxx =
d
dx

(
− vu + 3u2 + uxx

)
= 0 .

We thus get
−vu + 3u2 + uxx + e = 0 ,
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where e is an integration constant. Multiplying this equation with an integrating factor ux we get

−vuux + 3u2ux + uxuxx + eux =
d
dx

(
− v

2
u2 + u3 +

1
2

u2
x + eu

)
= 0 ,

We thus obtain
u2
x = k − 2eu + vu2 − 2u3 = −2(u − b1)(u − b2)(u − b3) ,

where k is another integration constant. In the last equation we traded the integration constants e, k
for three parameters b3 ≥ b2 ≥ b1 which satisfy the relation

v = 2(b1 + b2 + b3) .

Equation

u2
x = −2(u − b1)(u − b2)(u − b3) , (5.1)

describes motion of a "particle" with the coordinate u and the time x in the potential V = 2(u −
b1)(u − b2)(u − b3). Since u2

x ≥ 0 for b2 ≤ u ≤ b3 the particle oscillates between the end points b2
and b3 with the period

` = 2
∫ b3

b2

du√−2(u − b1)(u − b2)(u − b3)
=

2
√

2
(b3 − b2)1/2 K(m) ,

where K(m) is an elliptic integral of the first kind and m is an elliptic modulus 0 ≤ m = b3−b2
b3−b1

≤ 1.
The equation (5.1) can be integrated in terms of Jacobi elliptic cosine function cn(x,m) to give

u(x, t) = b2 + (b3 − b2) cn2
(√

(b3 − b1)/2(x − vt − x0),m
)
,

where x0 is an initial phase. This solution is often called as cnoidal wave. When m → 1, i.e.
b2 → b1, the cnoidal wave turns into a solitary wave

u(x, t) = b1 +
A

cosh2
(√

A
2 (x − vt − x0)

) .

Here the velocity v = 2(b1+b2+b3) = 2(2b1+b3) = 2(3b1+b3−b1) is connected to the amplitude
A = b3 − b1 by the relation

v = 6b1 + 2A .

Here u(x, t) = b1 is called a background flow because u(x, t) → b1 as x → ±∞. One can further
note that the background flow can be eliminated by a passage to a moving frame and using the
invariance of the KdV equation with respect to the Galilean transformations u → u+d, x → x−6dt,
where d is constant.

To sum up, the cnoidal waves form a three-parameter family of the KdV solutions while solitons
are parametrised by two independent parameters (with an account of the background flow).

KdV and isospectral deformations. Consider the Sturm-Liouville operator

L = ∂2
x − u(x) ,
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where x ∈ R. Assume that u(x) develops in time according to the KdV equation (u′ ≡ ux)

u̇ − 6uu′ + u′′′ = 0 . (5.2)

Then the spectrum of L appears however to be time-independent under the KdV evolution. Below
we prove this statement.

The spectral problem reads
Lψ = λψ ,

that is

ψ ′′ = (u + λ)ψ , (5.3)

Take the time derivative of this equation, we get

ψ̇ ′′ − u̇ψ − (u + λ)ψ̇ = λ̇ψ .

Now multiply both sides by ψ

ψ̇ ′′ψ − u̇ψ2 − (u + λ)ψ︸    ︷︷    ︸
ψ′′

ψ̇ = λ̇ψ2 .

Hence,
ψ̇ ′′ψ − ψ ′′ψ̇ − u̇ψ2 = λ̇ψ2 .

The fist two terms can be written as a total derivative, so we obtain
(
ψ̇ ′ψ − ψ̇ψ ′

) ′ − u̇ψ2 = λ̇ψ2 .

Now we replace u̇ for the right hand side of the KdV equation which gives
(
ψ̇ ′ψ − ψ̇ψ ′

) ′ −
(
6uu′ − u′′′

)
ψ2 = λ̇ψ2 .

Successively differentialting the spectral equation (5.3), we obtain

ψ ′′′ = (u + λ)′ψ + (u + λ)ψ ′ ,

ψ ′′′′ = (u + λ)′′ψ + 2(u + λ)′ψ ′ + (u + λ)ψ ′′ ,

ψ ′′′′′ = (u + λ)′′′ψ + 3(u + λ)′′ψ ′ + 3(u + λ)′ψ ′′ + (u + λ)ψ ′′′ .

In the expression u′′′ψ2 = (u + λ)′′′ψ2 we replace (u + λ)′′′ψ by using the last relation:

u′′′ψ2 = ψ ′′′′′ψ − 3(u + λ)′′ψ ′ψ − 3(u + λ)′ψ ′′ψ − (u + λ)ψψ ′′′ =

= ψ ′′′′′ψ − ψ ′′ψ ′′′ − 3(u + λ)′′ψ ′ψ − 3(u + λ)′ψ ′′ψ =

=
(
ψ ′′′′ψ − ψ ′′′ψ ′

) ′ − 3(u + λ)′′ψ ′ψ − 3(u + λ)′ψ ′′ψ .

Analogously,

uu′ψ2 = uψ(u′ψ) = uψ
(
ψ ′′′ − (u + λ)ψ ′

)
= u

(
ψ ′′′ψ − (u + λ)ψψ ′

)
=
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= u
(
ψ ′′′ψ − ψ ′′ψ ′

)
= u

(
ψ ′′ψ − ψ ′ψ ′

) ′
= (u + λ)

(
ψ ′′ψ − ψ ′ψ ′

) ′ − λ
(
ψ ′′ψ − ψ ′ψ ′

) ′
.

On the other hand,

(u + λ)
(
ψ ′′ψ − ψ ′ψ ′

) ′
= (u + λ)(u + λ)′ψ2 = (u + λ)′ψ ′′ψ .

Thus, we can write

uu′ψ2 =
1
2

[
(u + λ)

(
ψ ′′ψ − ψ ′ψ ′

) ′
+ (u + λ)′ψ ′′ψ

]
− λ

(
ψ ′′ψ − ψ ′ψ ′

) ′
.

Finally, combining everything together, we find[
ψ̇ ′ψ − ψ̇ψ ′ + ψ ′′′′ψ − ψ ′′′ψ ′ + 6λ

(
ψ ′′ψ − ψ ′ψ ′)

] ′ −
− 3(u + λ)′′ψ ′ψ − 3(u + λ)′ψ ′′ψ − 6

2
[
(u + λ)

(
ψ ′′ψ − ψ ′ψ ′) ′ + (u + λ)′ψ ′′ψ

]
= λ̇ψ2 ,

which upon simplification gives[
ψ̇ ′ψ − ψ̇ψ ′ + ψ ′′′′ψ − ψ ′′′ψ ′ + 6λ

(
ψ ′′ψ − ψ ′ψ ′)

] ′ −
− 3(u + λ)′′ψ ′ψ − 6(u + λ)′ψ ′′ψ − 3(u + λ)

(
ψ ′′ψ − ψ ′ψ ′) ′ = λ̇ψ2 ,

One can further note that

(u + λ)′′ψ ′ψ + 2(u + λ)′ψ ′′ψ + (u + λ)
(
ψ ′′ψ − ψ ′ψ ′) ′ =

=
[
(u + λ)ψ ′′ψ + (u + λ)′ψ ′ψ − (u + λ)ψ ′ψ ′

] ′
=

=
[(

(u + λ)ψ ′
) ′
ψ −

(
(u + λ)ψ ′

)
ψ ′

] ′
.

With this relation at hand, we obtain

λ̇ψ2 =

[(
ψ̇ + ψ ′′′ + 6λψ ′ − 3(u + λ)ψ ′

) ′
ψ −

(
ψ̇ + ψ ′′′ + 6λψ ′ − 3(u + λ)ψ ′

)
ψ ′

] ′

Hence, introducing the short-hand notation

W = ψ̇ + ψ ′′′ − 3(u − λ)ψ ′ ,

we will get

λ̇ψ2 =
[
W ′ψ −W ψ ′

] ′
.

The right hand side is the total derivative. Thus, if the field u decreases sufficiently fast at infinity,
we find that

λ̇

∫
ψ2dx = 0 ,

which implies that λ̇ = 0, that is an eigenvalue λ does not depend on time. The KdV deformation
of the Sturm-Liouville operator is isospectral. From the point of view of dynamical systems this
means that the spectrum of the Sturm-Liouville operator comprises integrals of motion of the KdV
equation.
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Sine-Gordon cnoidal wave and soliton. Consider the Sine-Gordon equation

φtt − φxx + m2

β
sin βφ = 0 ,

where we assume that the functions φ(x, t) and φ(x, t) + 2π/β are assumed to be equivalent. Make
an ansatz

φ(x, t) = φ(x − vt)

which leads to
(v2 − 1)φxx +

m2

β
sin βφ = 0 .

This can be integrated once

C =
v2 − 1

2
φ2
x −

m2

β2 cos βφ =
v2 − 1

2
φ2
x +

2m2

β2 sin2 βφ

2
− m2

β2 ,

where C is an integration constant. This is nothing else but the conservation law of energy for the
mathematical pendulum in the gravitational field of the Earth. We further bring the equation to the
form

φ2
x =

2
v2 − 1

(
C +

m2

β2 −
2m2

β2 sin2 βφ

2

)
. (5.4)

After making a substitution y = sin βφ
2 the equation becomes

(y′)2 =
m2

(v2 − 1)
(1 − y2) *.,

C + m2

β2

2m2

β2

− y2+/- .
This equation has solutions in terms of elliptic functions which are analogous to the cnoidal waves
of the KdV equation. However, as is known, the pendulum has three phases: oscillatory (an elliptic
solution), rotatory (an elliptic solution) and motion with an infinite period. The later solution is
precisely the one that would correspond to the SG soliton we are interested in. Assuming v2 < 1,
we see18 that such a solution would arise from (5.4) if we take C = −m2

β2 . In this case equation (5.4)
reduces to

φx =
2m

β
√

1 − v2
sin

βφ

2
.

This can be integrated to19

φ(x, t) = σ
4
β

arctan exp
(

m(x − vt − x0)√
1 − v2

)
.

Here σ = ±1. This solution can be interpreted in terms of relativistic particle moving with the
velocity v. The field φ(x, t) has an important characteristic – topological charge

Q =
β

2π

∫
dx
∂φ

∂x
=

β

2π
(φ(∞) − φ(−∞)) .

18Restoring the speed of light c this condition for the velocity becomes v2 < c2, i.e., the center of mass of the soliton
cannot propagate faster than light.

19If φ(x, t) is a solution then −φ(x, t) is also a solution, as follows from (5.4).
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On the solutions one gets

Q =
β

2π

(
σ

4
β

) (
π

2
− 0

)
= σ .

In addition to the continuous parameters v and x0, the soliton of the SGmodel has another important
discrete characteristic – topological charge Q = σ. Solutions with Q = 1 are called solitons (kinks),
while solutions with Q = −1 are called ani-solitons (anti-kinks).

The stability of solitons finds its origin in the fine balance of nonlinearity and dispersion in
the corresponding PDEs. Nonlinearity drives a solitary wave to concentrate further; dispersion is
the effect to spread such a localized wave. If one of these two competing effects is lost, solitons
become unstable and, eventually, disappear. In this respect, solitons are completely different from
linear waves.

The SG model has even more sophisticated solutions. Consider the following function

φ(x, t) =
4
β

arctan
ω2
ω1

sin
(
mω1 (t−vx)√

1−v2 + φ0
)

cosh
(
mω2 (x−vt−x0)√

1−v2

) .

This is solution of the SG model called the double-soliton or breather. In addition to the uniform
motion with velocity v corresponding to a relativistic particle, the breather oscillates both in space
and in time with frequencies mvω1√

1−v2 and mω1√
1−v2 , respectively. The parameter φ0 plays the role of the

initial phase. In particular, if v = 0 the breather is a time-periodic solution of the SG equation. It
has zero topological charge and can be interpreted as the bound state of the soliton and anti-soliton.

5.2 Zero curvature representation

The inverse scattering method (the method of solving a certain class of integrable non-linear
PDEs) is based on the following remarkable observation. A two-dimensional PDE appears as the
consistency condition of the overdetermined system of equations

∂Ψ

∂x
= U (x, t, λ)Ψ ,

∂Ψ

∂t
= V (x, t, λ)Ψ .

(5.5)

for a proper choice of the matrices U (x, t, λ) and V (x, t, λ). The consistency condition arises upon
differentiation the first equation with respect to t and the second with respect to x:

∂2Ψ

∂t∂x
= ∂tU (x, t, λ)Ψ +U (x, t, λ)∂tΨ =

(
∂tU (x, t, λ) +U (x, t, λ)V (x, t, λ)

)
Ψ ,

∂2Ψ

∂x∂t
= ∂xV (x, t, λ)Ψ + V (x, t, λ)∂xΨ =

(
∂xV (x, t, λ) + V (x, t, λ)U (x, t, λ)

)
Ψ ,

which implies the fulfilment of the following relation

∂tU − ∂xV + [U,V ] = 0 . (5.6)

This relation can be viewed as an analogue of the Lax representation (1.55). In the case when there
is no x-dependence, (5.6) turns into (1.55) with the identification L = U and M = V .
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If we introduce a gauge field Lα with components Lx = U, Lt = V , then (5.6) can be
interpreted as a condition of vanishing of the curvature Fαβ of L

∂αLβ − ∂βLα − [Lα,Lβ] = 0 . (5.7)

Correspondingly, we will refer to (5.6), (5.7) as the Lax representation or, equivalently, as the
zero curvature condition (representation). Below we present two examples of differential equations
admitting the zero curvature representation.

Example: KdV equation. Introduce the following 2 × 2 matrices

U = *,
0 1

λ + u 0
+- , V = *,

ux 4λ − 2u
4λ2 + 2λu + uxx − 2u2 −ux

+- .
On can verify that

∂tU − ∂xV + [U,V ] = *,
0 0

ut + 6uux − uxxx 0
+- .

Note that there is yet another representation of the KdV equation which has the Lax form
(1.55) and does not involve the spectral parameter. This is a representation by means of differential
operators, namely,

L = ∂2
x − u , M = −4∂3

x + 6u∂x + 3ux .

One can verify that with this choice for L and M equation (1.55) reduces to the KdV equation
(5.2). According to the general theory, the spectrum of L must be conserved, which explains the
isospectral property of the Sturm-Liouville operator that we have proved earlier by direct means.

Example: SG equation. Introduce the following 2 × 2 matrices

U =
β

4i
φtσ3 +

k0
i

sin
βφ

2
σ1 +

k1
i

cos
βφ

2
σ2 ,

V =
β

4i
φxσ3 +

k1
i

sin
βφ

2
σ1 +

k0
i

cos
βφ

2
σ2 ,

where σi are the Pauli matrices and

k0 =
m
4

(
λ +

1
λ

)
, k1 =

m
4

(
λ − 1

λ

)
.

Again, by direct computation one verifies that the condition of zero curvature is equivalent to the
SG equation.

Consider now a model which admits the zero curvature representation (5.6) for fields satisfying
periodic boundary conditions with the period 2π. The one-parameter family of the flat connections
allows one to define the monodromy matrix T(λ) which is the path-ordered exponential of the Lax
component U (λ):

T(λ) =P exp
∫ 2π

0
dx U (λ) . (5.8)

Let us derive the time evolution equation for this matrix. We have

∂tT(λ) =
∫ 2π

0
dx Pe

∫ 2π
x

dyU (∂tU) Pe
∫ x

0 dyU
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=

∫ 2π

0
dx Pe

∫ 2π
x

dyU (∂xV + [V,U]) Pe
∫ x

0 dyU , (5.9)

where in the last formula we used the flatness of Lα ≡ (U,V ). The integrand of (5.9) is the total
derivative

∂tT(λ) =
∫ 2π

0
dx ∂x

(
Pe

∫ 2π
x

dyU V Pe
∫ x

0 dyU
)
. (5.10)

Thus, we obtained the following evolution equation

∂tT(λ) = [V (2π, t, λ),T(λ)] . (5.11)

This formula shows that the eigenvalues of T(λ) generate an infinite set of integrals of motion upon
expansion in λ. Thus, the spectral properties of the model are encoded into the monodromy matrix.
In particular, one can define a Riemann surface P(λ, ζ ) = det(T(λ) − ζ1) = 0, where ζ, λ ∈ C,
analogous to the spectral curve (1.69) in the finite-dimensional case. The coefficients of P(λ, ζ )
are integrals of motion. The word "monodromy" for T comes from the fact that T(t) represents the
monodromy of a solution of the fundamental linear system (5.5)

Ψ(2π, t) = T(t)Ψ(0, t) .

Indeed, if we differentiate this equation over t we get

∂tΨ(2π, t) = ∂tTΨ(0, t) + T∂tΨ(0, t) ,

which, according to the fundamental linear system, gives

Lt (2π, t)TΨ(0, t) = ∂tTΨ(0, t) + TLt (0, t)Ψ(0, t) .

This leads to the same equation for the time evolution of the monodromy matrix as found before

∂tT = [Lt,T] .

5.3 Local integrals of motion

The Lax representation of the two-dimensional PDE allows one to exhibit an infinite number of
conservation laws. The procedure to derive the local conservation laws from the Lax representation
is known as abelianization procedure and we will outline it below.

Starting from the zero-curvature condition (5.6), we assume that the matrices U (x, t, λ) and
V (x, t, λ) depend on the spectral parameter λ in a rational way and that they have poles at constant,
i.e. x, t-independent, values of λ = λk . Thus, we can write

U = U0 +
∑

k

Uk , Uk =

−1∑

r=−nk
Uk,r (x, t)(λ − λr )r ,

V = V0 +
∑

k

Vk , Vk =

−1∑

r=−mk

Vk,r (x, t)(λ − λr )r .
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Matching the pole structure in the zero curvature equations shows that that these equations are
always compatible: there is one more variable than the number of equations, but there is a gauge
transformation (see below) of the connection (U,V ) which leaves the zero-curvature condition
invariant.

To understand solutions of the zero-curvature condition, we will perform a local analysis
around a pole λ = λk . Our aim is to show that around each singularity one can perform a gauge
transformation which brings the matrices U (λ) and V (λ) to a diagonal form. Finally, to make the
consideration as simple as possible, we assume that the pole is located at zero.

In the neighbourhood of λ = 0 the functions U and V can be expanded into Laurent series

U (x, t, λ) =
∞∑

r=−n
Ur (x, t)λr , V (x, t, λ) =

∞∑

r=−m
Vr (x, t)λr .

Let g ≡ g(x, t, λ) be a regular gauge transformation around λ = 0 that is

g =

∞∑

r=0
grλ

r , g−1 =

∞∑

r=0
hrλr .

Consider the gauge transformation

Ũ = gUg−1 + ∂xgg
−1 ,

Ṽ = gVg−1 + ∂tgg
−1 .

Consider the transition matrix T(x, y, λ) which is a solution of the differential equation
(
∂x −U (x, λ)

)
T(x, y, λ) = 0

satisfying the initial condition T(x, x, λ) = 1. Formally such a solution is given by the path-ordered
exponent

T(x, y, λ) =Pe
∫ x

y
dzU (z,λ)

.

Under the gauge transformation we have

g(x, λ)
(
∂x −U (x, λ)

)
g−1(x, λ)Tg (x, y, λ) = 0 ,

where
Tg (x, y, λ) = g(x, λ)T(x, y, λ)g−1(y, λ) .

is the transition matrix for the gauged-transformed connection Ũ, which also obeys the condition
Tg (x, x, λ) = 1. This formula shows how the transition matrix transforms under the gauge transfor-
mations of the Lax connection. By means of a regular gauge transformation the transition matrix
can be diagonalized around every pole of the matrix U, namely,

T(x, y, λ) = g(x, λ) exp(D(x, y, λ))g−1(y, λ) ,

where

D(x, y, λ) =
∞∑

r=−n
Dr (x, y)λr
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is the diagonal matrix. Below we consider a concrete example which illustrates the abelianization
procedure, as well as the technique of constructing local integrals of motion.

Example: The Heisenberg model. We start with the definition of the model classical Heisenberg
model. Consider a spin variable S(x):

S(x) =
∑

i

Si (x)σi .

Clearly, Si (x)2 = s2. Here σi are the standard Pauli matrices obeying the relations

[σi, σ j] = 2iε i jkσk , Tr(σiσ j ) = 2δi j .

The spins Si (x) are the dynamical variables subject to the Poisson structure

{Si (x), S j (y)} = ε i jkSk (x)δ(x − y) .

The phase space is thus infinite-dimensional. The hamiltonian of the model is

H = −1
4

∫ 2π

0
dx Tr(∂xS∂xS)

and the equations of motion are

∂tS(x) = {H, S(x)} = −1
4

∫ 2π

0
dy {Tr(∂yS∂yS), S(y)} = ε i jkSi (x)∂2

xS j (x)σk .

These equations can be compactly written as

∂tS = − i
2

[S, ∂2
xS] = − i

2
∂x[S, ∂xS] . (5.12)

These are the Landau-Lifshitz equations. Written in the form (5.12), they admit a generalisation to
any Lie algebra. If we introduce the su(2)-valued current J with components

Jx = S , Jt = − i
2

[S, ∂xS] ,

then the equations of motion take the form of the current conservation

∂t Jx − ∂x Jt = 0 ,

which is εαβ∂αJβ = 0.
Integrability of the Landau-Lifshitz equations relies on the fact that they can be obtained from

the zero curvature condition
(∂α −Lα)Ψ(x, t) = 0 .

Here

Lx = − i
λ

S(x) ,

Lt = −2is2

λ2 S(x) − 1
2λ

[S(x), ∂xS(x)] .
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Indeed,

∂tLx − ∂xLt + [Lx,Lt ] = − i
λ
∂tS(x) +

2is2

λ2 ∂xS(x)

+
1

2λ
∂x[S(x), ∂xS(x)] +

i
2λ2 [S(x), [S(x), ∂xS(x)]] = 0 .

Further, computing the Poisson bracket between the components Lx ≡ U (x, λ) of the Lax connec-
tion, we find

{U (x, λ),U (y, µ)} = − 1
λµ
{Si (x), S j (y)}σi ⊗ σ j = − 1

λµ
ε i jkSk (x)σi ⊗ σ jδ(x − y) .

On the other hand,

[σi ⊗ σi

λ − µ ,U (x, λ) ⊗ I + I ⊗ U (y, µ)
]
δ(x − y) = −

[σi ⊗ σi

λ − µ ,
i
λ

S(x) ⊗ I + I ⊗ i
µ

S(y)
]
δ(x − y)

= − i
λ − µSk (x)

( 1
λ

[σi, σk] ⊗ σi +
1
µ
σi ⊗ [σi, σk]

)
δ(x − y) =

=
2

λ − µ
( 1
λ
− 1
µ

)
ε i jkSk (x)σi ⊗ σ jδ(x − y) = − 2

λµ
ε i jkSk (x)σi ⊗ σ jδ(x − y) .

Thus, we observe that the Poisson bracket between the components of the Lax connection admits
in the r-matrix form

{U (x, λ),U (y, µ)} =
[
r (λ, µ),U (x, λ) ⊗ I + I ⊗ U (y, µ)

]
δ(x − y) ,

where the classical spectral-dependent r-matrix appears to be

r (λ, µ) =
1
2
σi ⊗ σi

λ − µ .

This form of the brackets between the components of the Lax connection implies that the Poisson
bracket between the components of the monodromy matrix

T(λ) =P exp
[ ∫ 2π

0
dx U (x, λ)

]

is
{T(λ) ⊗ T(µ)} =

[
r (λ, µ),T(λ) ⊗ T(µ)

]
.

This is the quadratic Sklyanin bracket. It is quadratic in the matrix elements of the monodromy
matrix.

From the definition, T(λ) is analytic (entire) in λ with an essential singularity at λ = 0. It is
straigntforward to find the expansion around λ = ∞:

T(λ) = I +
i
λ

∫ 2π

0
dx S(x) − 1

λ2

∫ 2π

0
dx S(x)

∫ x

0
dy S(y) + · · ·

The development in 1/λ has an infinite radius of convergency.
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To find the structure of T(λ) around λ = 0 is more delicate but equally important as this yields
the local conserved charges in involution. To proceed, introduce the so-called partial monodromy

T(x, λ) =P exp
[∫ x

0
dy U (y, λ)

]
.

The main point is to note that there exists a local gauge transformation, regular at λ = 0, such that

T(x, λ) = g(x)D(x)g−1(0) ,

where D(x) = exp(id(x)σ3) is a diagonal matrix. We can choose g to be unitary, and, since g is
defined up to to a diagonal matrix, we can require that it has a real diagonal part

g =
1

(1 + vv̄)
1
2

*,
1 v

−v̄ 1
+- .

Then the differenial equation for the monodromy

∂xT = UT = − i
λ

ST

becomes a differential equation for g and d:

g−1∂xg + i∂xdσ3 +
i
λ
g−1Sg = 0 .

We project this equation on the Pauli matrices and get

∂xv = − i
λ

(S− + 2vS3 − S+v2)

∂xd =
1

2λ
(−2S3 + vS+ + v̄S−) .

The first of these equations is a Riccati equation for v(x). Expanding in λ the functions v(x) and
d(x) as

∂xd = − s
λ
+

∞∑

n=0
ρn(x)λn

v(x) =
∞∑

n=0
vn(x)λn , v0 =

S3 − s
S+

,

we rewrite the Riccati equation in the form

2isvn+1 = −v′n + iS+
n∑

m=1
vn+1−mvm

and
ρn =

1
2

(vn+1S+ + v̄n+1S−) .

Note that v(x) is regular at λ = 0. Equations above recursively determine the functions vn(x) and
ρn(x) as local functions of the dynamical variables Si (x). This describes the asymptotic behavior
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of T(λ) around λ = 0. The asymptotic series become convergent if we regularize the model by
discretizing the space interval.

Concerning the monodromy matrix T(λ), since g(x) is local and if we assume periodic
boundary conditions, we can write

T(λ) = cos p(λ)I + i sin p(λ)M (λ) ,

where M (λ) = g(0)σ3g(0)−1 and

p(λ) =
∫ 2π

0
dx ∂xd .

The trace of the monodromy matrix, called the transfer matrix, is

Tr T(λ) = 2 cos p(λ) .

Thus, p(λ) is the generating function for the commuting local conserved quantities

Hn+1 =

∫ 2π

0
dx ρn(x) , n = 0, 1, . . .

The first three integrals are

H1 =
i

4s

∫ 2π

0
dx log

(
S+
S−

)
∂xS3 ,

H2 = − 1
16s3

∫ 2π

0
dx tr

(
∂xS∂xS

)
,

H3 =
i

64s5

∫ 2π

0
dx tr

(
S[∂xS, ∂2

xS]
)
.

The integrals H1 and H2 are the momentum and energy, respectively.
This discussion finishes our brief presentation of some properties of integrable PDEs. Con-

cerning finding explicit solutions of such equations, the powerful inverse scattering method and
algebro-geometric (finite-gap) integration were developed basing on the existence of Lax repre-
sentation. The reader is invited to consult, e.g., [24, 25], [6] on thorough explanation of these
techniques.
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