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1. Introduction

Kähler spaces and specifically projective spaces are very interesting from the physical point
of view. Since they are maximally symmetric spaces it is natural to consider physical systems on
them. Moreover, due to their symplectic structure it is also natural to consider them as a phase
spaces. Let us maintain that systems with Kähler phase spaces can be quantized in an elegant way
via geometric quantization. An integrable system with Kähler phase space was suggested in [4]
and is called compactified Ruijsenaars-Schneider system (relativistic Calogero model). Also there
exists an explicit mapping of the phase space of this system to the complex projective space which
was done in [5]. As we have maintained above, it can be quantized using geometric quantization
methods [6, 7].

In the series of papers ([8–11]) so called Calogero-Oscillator and Calogero-Coulomb systems
had been studied in spherical coordinates and by the use of compex coordinates an intresting results
were obtained. 𝑁-extended superconformal extension of these systems can be constructed for
one-dimensional case [12]. In [2] is shown how are complex coordinates and Kähler phase space
related. In that paper authors proposed the description of superintegrable models with dynamical
𝑠𝑜(1.2) symmetry, and of the generic superintegrable deformations of oscillator and Coulomb
systems in terms of higher-dimensional Klein model playing the role of phase space. Saying
higher-dimensional Klein model we mean the non-compact analog of the complex projective space.
The key point was that it was possible to express the constants of motion of those systems via
Killing potentials defining the 𝑠𝑢(𝑁.1) isometries of the Kähler structure.

In our belief, these techniques that were established ([2]) for the pure bosonic case can be very
usefully aplied to the study of supersimmetrizations as well. Some preliminary paper ([13]) was
published devoted to the compact and non-compact complex projective spaces that can be obtained
from complex (pseudo)Euclidean spaces by Hamiltonian reduction. In this paper we are going to
perform a similar steps for the, so called, compact and non-compact Complex projective superspaces
using super-Hamiltonian reduction. To have an idea about super-Hamiltonian reduction and related
topics see [1]. In [3] the supergeneralization of 𝐶𝑃𝑁 (compact complex projective space) provided
with even and odd Kähler structures are constructed using Hamiltonian reduction. Let us make some
remarks about super-Hamiltonian reduction. Roughly speaking the super-Hamiltonian formalism is
a straightforward generalization of ordinary Hamiltonian formalism plus sign factors that are related
with Grassmann parity. From supergeometrically point of view the only perceptible difference is the
existence of the odd Poisson brackets (anti-brackets) which has no analogs in the ordinary theory.

The Poisson brackets of the functions 𝑓 (𝑥) and 𝑔(𝑥) on superspaces are defined by the expres-
sion

{ 𝑓 , 𝑔}𝜅 =
𝜕𝑟 𝑓

𝜕𝑥𝐴
Ω𝐴𝐵

𝜅 (𝑥) 𝜕𝑙𝑔
𝜕𝑥𝐵

, 𝜅 = 0, 1. (1)

They obey the conditions

𝑝({ 𝑓 , 𝑔}𝜅 ) = 𝑝( 𝑓 ) + 𝑝(𝑔) + 𝜅 (grading), (2)
{ 𝑓 , 𝑔}𝜅 = −(−1) (𝑝 ( 𝑓 )+𝜅) (𝑝 (𝑔)+𝜅) {𝑔, 𝑓 }𝜅 (”antisymmetricity”), (3)
(−1) (𝑝 ( 𝑓 )+1) (𝑝 (ℎ)+𝜅) { 𝑓 , {𝑔, ℎ}𝜅 }𝜅 + 𝑐.𝑝. = 0 (Jacobi identity). (4)
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Here 𝑥𝐴 are local coordinates of superspace, while 𝜕𝑟/𝜕𝑥𝐴 and 𝜕𝑙/𝜕𝑥𝐴 denote right and left
derivatives respectively.

Clearly the nondegenerate odd Poisson brackets can be defined on the (𝑁.𝑁)-dimensional
superspaces, and the nondegenerate even Poisson brackets could be defined on (2𝑁.𝑀)-dimensional
ones. In this case the Poisson brackets are associated with the supersymmetric structure

Ω𝜅 = 𝑑𝑧𝐴Ω(𝜅)𝐴𝐵𝑑𝑧
𝐵, 𝑑Ω𝜅 = 0, (5)

where Ω(𝜅)𝐴𝐵Ω
𝐵𝐶
𝜅 = 𝛿𝐶

𝐴
.

In the further discussion in this paper only even brackets (𝜅 = 0) will be discussed. In this paper
we are going to perform super-Hamiltonian reduction in a concrete case, especially to get compact
and non-compact complex projective spaces from complex (pseudo)Euclidean spaces. And then we
will concentrate on the non-compact case, and specifically on the supergeneralized 𝑁-dimensional
Klein model, which will be explained later, and the mapping of superconformal mechanics on it.

2. Compact and non-compact Complex Projective Superspaces

The compact and non-compact complex projective superspaces 𝐶𝑃𝑁 |𝑀 and 𝐶𝑃
𝑁 |𝑀

can be
obtained by super-Hamiltonian reduction of Complex Euclidean 𝐶𝑁+1 |𝑀 and Complex pseudo-
Euclidean 𝐶𝑁 .1 |𝑀 superspaces.

Let us consider the complex superspace 𝐶𝑁+1 |𝑀 (𝐶𝑁 .1 |𝑀 ) parameterized by the complex
coordinates (𝑢𝑎, 𝜂𝐴), where 𝑎 = 0, 1, ..., 𝑁 and 𝐴 = 1, ..., 𝑀 . Let us equip it with the canonical
symplectic structure

Ω0 = 𝚤

(
𝑑𝑢0 ∧ 𝑑�̄�0 ±

𝑁∑︁
𝑎=1

𝑑𝑢𝑎 ∧ 𝑑�̄�𝑎 + 𝚤
𝑀∑︁
𝐴=1

𝑑𝜂𝐴 ∧ 𝑑𝜂𝐴
)
. (6)

and associated Poisson brackets

{𝑢𝑎, �̄�𝑏} = 𝚤𝛿𝑎�̄�, (compact)
{𝑢𝑎, �̄�𝑏} = 𝚤𝛾𝑎�̄�, (non − compact)

{𝜂𝐴, 𝜂𝐵} = {𝜂𝐵, 𝜂𝐴} = 𝛿𝐴�̄�, (7)

where 𝑎, 𝑏 = 0, 1, ..., 𝑁 and 𝛾 = diag(1,−1, · · · ,−1).
On this superspace we can define the linear Hamiltonian action of 𝑢(𝑁.1|𝑀) = 𝑢(1) ×

𝑠𝑢(𝑁.1|𝑀) superalgebra

{ℎ𝑎�̄�, ℎ𝑐𝑑} = 𝚤
(
ℎ𝑎𝑑𝛿

𝑏�̄� − ℎ𝑐�̄�𝛿𝑑�̄�
)
, {𝑅𝐴�̄�, 𝑅𝐶�̄�} = 𝚤

(
𝑅𝐴�̄�𝛿

𝐵�̄� − 𝑅𝐶�̄�𝛿
𝐷�̄�

)
, (8)

{Θ𝐴�̄�,Θ�̄�𝑏} = ℎ𝑏�̄�𝛿𝐵�̄� − 𝑅𝐴�̄�𝛿
𝑎�̄�, (9)

{Θ𝐴�̄�, ℎ𝑏�̄�} = 𝚤Θ𝐴�̄�𝛿
𝑎�̄�, {Θ𝐴�̄�, 𝑅𝐵�̄�} = −𝚤Θ𝐵�̄�𝛿

𝐶�̄�, (10)

where
ℎ𝑎�̄� = �̄�𝑎𝑢𝑏, Θ𝐴�̄� = 𝜂𝐴𝑢𝑎, 𝑅𝐴�̄� = 𝚤𝜂𝐴𝜂𝐵 . (11)
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The 𝑢(1) generator defining the center of 𝑢(𝑁.1|𝑀) is given by the expression

𝐽 = 𝑢0�̄�0 ±
𝑁∑︁
𝑎=1

𝑢𝑎�̄�𝑎 + 𝚤
𝑀∑︁
𝐴=1

𝜂𝐴𝜂𝐴 : {𝐽, ℎ𝑎�̄�} = {𝐽,Θ𝐴�̄�} = {𝐽, 𝑅𝐴�̄�} = 0. (12)

The reduction of 𝐶𝑁+1 |𝑀 (𝐶𝑁 .1 |𝑀 ) by this generator will bring as to (non-compact) complex
projective superspace 𝐶𝑃𝑁 |𝑀 (𝐶𝑃

𝑁 |𝑀
). Since this reduction yields the (2𝑁 |2𝑀)-(real) dimen-

sional phase space we have to choose, at first, the 2𝑁 real (𝑁 complex) bosonic functions commuting
with 𝐽0, and 2𝑀 real (𝑀 complex) fermionic ones. Then, we have to calculate their Poisson brackets
and restrict the latter to the level surface

𝐽 = 𝑔. (13)

As a result we will get the Poisson brackets on the reduced (2𝑁 |2𝑀)-(real) dimensional space,
with that𝑈 (1)-invariant functions playing the role of the latter’s coordinates:

Let us choose the following𝑈 (1) invaiant functions

𝑧𝑎 =
𝑢𝑎

𝑢0 , 𝜃𝐴 =
𝜂𝐴

𝑢0 : {𝑧𝑎, 𝐽} = {𝜃𝐴, 𝐽} = 0, and 𝑐.𝑐. : (14)

notice that from now on the indices 𝑎 are running from 1 to N. Then, from the equation (13) we get
the expression

𝐴 :=
1

𝑢0�̄�0 |𝐽=𝑔 =
1 ± ∑

𝑐 𝑧
𝑐𝑧𝑐 + 𝚤∑𝐶 𝜃

𝐶𝜃𝐶

𝑔
(15)

So, calculating the Poisson brackets of the functions (14) and having in mind the above
expression we arrive to the reduced Poisson brackets defined by the following non-zero relations
(and their complex conjugates)

{𝑧𝑎, 𝑧𝑏} = 𝑧𝑎𝑧𝑏 + 𝛿𝑎�̄�
𝐴

, {𝑧𝑎, 𝜃𝐴} = 𝑧𝑎𝜃𝐴

𝐴
, {𝜃𝐴, 𝜃𝐵} = 𝜃𝐴𝜃𝐵 + 𝛿𝐴�̄�

𝐴
. (16)

These Poisson brackets are defined by the following Kähler potential(s)

K = ±𝑔 log(1 ±
∑︁
𝑐

𝑧𝑐𝑧𝑐 + 𝚤
∑︁
𝐶

𝜃𝐶𝜃𝐶). (17)

Indeed, we have arrived to the Kähler potentials that are associated with (𝑁 |𝑀)-dimensional
compact complex projective superspace 𝐶𝑃𝑁 |𝑀 (for the upper sign) and (𝑁 |𝑀)-dimensional non-
compact complex projective superspace 𝐶𝑃

𝑁 |𝑀
(for the lower sign). From thes Kḧler potentials

one can deduce an 𝑠𝑢(𝑁 + 1|𝑀)-invariant (for the compact case) and an 𝑠𝑢(𝑁.1|𝑀) invariant
(for the non-compact case) Kähler metrics, which are somehow the super generalizations of the
Fubini-Study ones.

𝑑𝑠2 = 𝑔
𝑑𝑧𝑑𝑧 ± 𝚤𝑑𝜃𝑑𝜃

(1 ± 𝑧𝑐𝑧𝑐 + 𝚤𝜃𝐶𝜃𝐶)
∓ 𝑔 (𝑧𝑑𝑧 ± 𝚤𝜃𝑑𝜃) (𝑧𝑑𝑧 ∓ 𝚤𝜃𝑑𝜃)

(1 ± 𝑧𝑐𝑧𝑐 + 𝚤𝜃𝐶𝜃𝐶)2 (18)

The isometry algebra of this space(s) is 𝑠𝑢(𝑁+1|𝑀) (𝑠𝑢(𝑁.1|𝑀)). It is defined by the following
Killing potentials

ℎ𝑎�̄� = �̄�𝑎𝑢𝑏 |𝐽=𝑔 =
𝑧𝑎𝑧𝑏

𝐴
, Θ𝐴�̄� = 𝜂𝐴𝑢𝑎 |𝐽=𝑔 =

𝜃𝐴𝑧𝑎

𝐴
, 𝑅𝐴�̄� = 𝚤𝜂𝐴𝜂𝐵 |𝐽=𝑔 =

𝜃𝐴𝜃𝐵

𝐴
. (19)
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where 𝐴 is defined in formula (15). One could write these generators in canonical coordinates using
the following transformation,

𝑧𝑎 =

√︂
𝑝𝑎

𝑔 + 𝑝 − 𝚤𝜒𝐶 �̄�𝐶
𝑒𝚤𝜑𝑎 , 𝜃𝐴 = − 𝜒𝐴√︁

𝑔 + 𝑝 − 𝚤𝜒𝐶 �̄�𝐶
, 𝑝 =

∑︁
𝑎

𝑝𝑎, (20)

with
{𝜑𝑎, 𝑝𝑏} = 𝛿𝑎𝑏, {𝜒𝐴, �̄�𝐵} = 𝛿𝐴�̄� . (21)

3. A superextended Klein model

To present the linear realization of 𝑠𝑢(𝑁.1|𝑀) superconformal algebra let us consider the
complex pseudo-Euclidian superspace 𝐶𝑁 .1 |𝑀 equipped with the canonical Kähler structure, and
thus, by the canonical supersymplectic structure

Ω0 = 𝚤

𝑁∑︁
𝑎,𝑏=0

𝛾𝑎�̄�𝑑𝑣
𝑎 ∧ 𝑑�̄�𝑏 +

𝑀∑︁
𝐴=1

𝑑𝜂𝐴 ∧ 𝑑𝜂𝐴, (22)

with 𝑣𝑎, �̄�𝑎 being bosonic variables, and 𝜂𝐴, 𝜂𝐴 being fermionic ones, and with the matrix 𝛾𝑎�̄�
chosen in the form

𝛾 =

©«

0 −𝑖
𝑖 0

−1
. . .

−1

ª®®®®®®®¬
, 𝑎, 𝑏 = 0, 1, ..., 𝑁 − 1. (23)

For the transition to the diagonal metrics 𝛾 = diag(1,−1, . . . ,−1) one should simply perform the
transformation

𝑣0 → 𝑣0 + 𝑣𝑁
√

2
, 𝑣𝑁 → 𝑣0 − 𝑣𝑁

𝚤
√

2
. (24)

With this supersymplectic structure we can associate the Poisson brackets given by the relations

{𝑣𝑎, �̄�𝑏} = −𝚤𝛾�̄�𝑎, {𝜂𝐴, 𝜂𝐵} = {𝜂𝐵, 𝜂𝐴} = 𝛿𝐴�̄�, 𝛾 �̄�𝑏𝛾𝑏�̄� = 𝛿𝑎𝑐 . (25)

Equivalently,

{𝑣0, �̄�𝑁 } = 1, {𝑣𝑁 , �̄�0} = −1, {𝑣𝛼, �̄�𝛽} = 𝚤𝛿𝛼𝛽 , {𝜂𝐴, 𝜂𝐵} = {𝜂𝐵, 𝜂𝐴} = 𝛿𝐴�̄�, (26)

here we introduced the indices 𝛼, 𝛽 = 1, . . . , 𝑁 − 1.
On this superspace we can define the linear Hamiltonian action of 𝑢(𝑁.1|𝑀) = 𝑢(1) ×

𝑠𝑢(𝑁.1|𝑀) superalgebra

{ℎ𝑎�̄�, ℎ𝑐𝑑} = −𝚤
(
ℎ𝑎𝑑𝛾

�̄�𝑏 − ℎ𝑐�̄�𝛾 �̄�𝑑
)
, {𝑅𝐴�̄�, 𝑅𝐶�̄�} = 𝚤

(
𝑅𝐴�̄�𝛿

𝐵�̄� − 𝑅𝐶�̄�𝛿
𝐷�̄�

)
, (27)

{Θ𝐴�̄�,Θ�̄�𝑏} = ℎ𝑏�̄�𝛿𝐵�̄� − 𝑅𝐴�̄�𝛾
�̄�𝑎, (28)

{Θ𝐴�̄�, ℎ𝑏�̄�} = −𝚤Θ𝐴�̄�𝛾
�̄�𝑎, {Θ𝐴�̄�, 𝑅𝐵�̄�} = −𝚤Θ𝐵�̄�𝛿

𝐶�̄�, (29)
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where
ℎ𝑎�̄� = �̄�𝑎𝑣𝑏, Θ𝐴�̄� = 𝜂𝐴𝑣𝑎, 𝑅𝐴�̄� = 𝚤𝜂𝐴𝜂𝐵 . (30)

The 𝑢(1) generator defining the center of 𝑢(𝑁.1|𝑀) is given by the expression

𝐽 = 𝛾𝑎�̄�𝑣
𝑎 �̄�𝑏 + 𝚤𝜂𝐴𝜂𝐴 : {𝐽, ℎ𝑎�̄�} = {𝐽,Θ𝐴�̄�} = {𝐽, 𝑅𝐴�̄�} = 0. (31)

Hence, reducing the system by the action of this generator we will get the "non-compact"
projective super-space𝐶𝑃

𝑁 |𝑀
(i.e. the supergeneralization of noncompact projective space𝐶𝑃

𝑁
).

Since this reduction yields the (2𝑁 |2𝑀)-(real) dimensional phase space we have to choose, at first,
the 2𝑁 real (𝑁 complex) bosonic functions commuting with 𝐽0, and 2𝑀 real (𝑁 complex) fermionic
ones. Then, we have to calculate their Poisson brackets and restrict the latter to the level surface

𝐽 = 𝑔. (32)

As a result we will get the Poisson brackets on the reduced (2𝑁 |2𝑀)-(real) dimensional space, with
that𝑈 (1)-invariant functions playing the role of the latter’s coordinates.

Let us choose the following𝑈 (1) invaiant functions

𝑤 =
𝑣𝑁

𝑣0 , 𝑧𝛼 =
𝑣𝛼

𝑣0 , 𝜃𝐴 =
𝜂𝐴

𝑣0 : {𝑤, 𝐽} = {𝑧𝑎, 𝐽} = {𝜃𝐴, 𝐽} = 0, and 𝑐.𝑐.. (33)

Then, from the equation (32) we get the expression

𝐴 :=
1
𝑣0�̄�0 |𝐽=𝑔 =

𝚤(𝑤 − �̄�) − 𝑧𝛾𝑧𝛾 + 𝚤𝜃𝐶𝜃𝐶
𝑔

(34)

So, calculating the Poisson brackets of the functions (33) and having in mind the above
expression we arrive to the reduced Poisson brackets defined by the following non-zero relations
(and their complex conjugates)

{𝑤, �̄�} = −𝐴(𝑤 − �̄�), {𝑧𝛼, 𝑧𝛽} = 𝚤𝐴𝛿𝛼𝛽 , {𝜃𝐴, 𝜃𝐵} = 𝐴𝛿𝐴�̄�, (35)

{𝑤, 𝑧𝛼} = 𝐴𝑧𝛼, {𝑤, 𝜃𝐴} = 𝐴𝜃𝐴. (36)

These Poisson brackets are associated with the supersymplectic structure

Ω =
𝚤

𝑔

[
1
𝐴2 𝑑𝑤 ∧ 𝑑�̄� − 𝚤𝑧

𝛼

𝐴2 𝑑𝑤 ∧ 𝑑𝑧𝛼 − 𝜃𝐴

𝐴2 𝑑𝑤 ∧ 𝑑𝜃𝐴

+ 𝚤𝑧
𝛼

𝐴2 𝑑𝑧
𝛼 ∧ 𝑑�̄� +

(
𝑔𝛿𝛼𝛽

𝐴
+ 𝑧

𝛼𝑧𝛽

𝐴2

)
𝑑𝑧𝛼 ∧ 𝑑𝑧𝛽 − 𝚤𝑧

𝛼𝜃𝐴

𝐴2 𝑑𝑧𝛼 ∧ 𝑑𝜃𝐴

− 𝜃𝐴

𝐴2 𝑑𝜃
𝐴 ∧ 𝑑�̄� + 𝚤𝜃

𝐴𝑧𝛼

𝐴2 𝑑𝜃𝐴 ∧ 𝑑𝑧𝛼 −
(
𝚤𝑔𝛿𝐴�̄�

𝐴
+ 𝜃

𝐴𝜃𝐵

𝐴2

)
𝑑𝜃𝐴 ∧ 𝑑𝜃𝐵

]
. (37)

It is defined by the Kähler potential

K = −𝑔 log(𝚤(𝑤 − �̄�) − 𝑧𝛼𝑧𝛼 + 𝚤𝜃𝐴𝜃𝐴). (38)

Now, let us perform the following transformation

𝑤 → 𝚤
𝑧𝑁 − 1
𝑧𝑁 + 1

, 𝑧𝛼 →
√

2
𝑧𝛼

𝑧𝑁 + 1
, 𝜃𝐴 →

√
2

𝜃𝐴

𝑧𝑁 + 1
, (39)

6



P
o
S
(
R
e
g
i
o
2
0
2
0
)
0
0
4

Non-compact Complex Projective Superspaces by Hamiltonian reduction Erik Khastyan

which is basically the same as (24). Doing so we will get the Kähler potential

K = −𝑔 log(1 − 𝑧𝑐𝑧𝑐 + 𝚤𝜃𝐶𝜃𝐶). (40)

In what follows we will call this space "noncompact projective superspace 𝐶𝑃
𝑁 |𝑀

". The
isometry algebra of this space is 𝑠𝑢(𝑁.1|𝑀), which can be easily obtained by the restriction of (29)
to the level surface (32). It is defined by the following Killing potentials

𝐻 := 𝑣𝑁 �̄�𝑁 |𝐽=𝑔 =
𝑤�̄�

𝐴
, 𝐾 := 𝑣0�̄�0 |𝐽=𝑔 =

1
𝐴
, 𝐷 := (𝑣𝑁 �̄�0 + 𝑣0�̄�𝑁 ) |𝐽=𝑔 =

𝑤 + �̄�
𝐴

, (41)

𝐻𝛼 := �̄�𝛼𝑣𝑁 |𝐽=𝑔 =
𝑧𝛼𝑤

𝐴
, 𝐾𝛼 := �̄�𝛼𝑣0 |𝐽=𝑔 =

𝑧𝛼

𝐴
, ℎ𝛼𝛽 := �̄�𝛼𝑣𝛽 |𝐽=𝑔 =

𝑧𝛼𝑧𝛽

𝐴
, (42)

𝑄𝐴 := 𝜂𝐴𝑣𝑁 |𝐽=𝑔 =
𝜃𝐴𝑤

𝐴
, 𝑆𝐴 := 𝜂𝐴𝑣0 |𝐽=𝑔 =

𝜃𝐴

𝐴
, Θ𝐴�̄� := 𝜂𝐴𝑣𝛼 |𝐽=𝑔 =

𝜃𝐴𝑧𝛼

𝐴
, (43)

𝑅𝐴�̄� := 𝚤𝜂𝐴𝜂𝐵 |𝐽=𝑔 = 𝚤
𝜃𝐴𝜃𝐵

𝐴
. (44)

With these expressions of Killing potentials at hands we can construct a variety of supercon-
formal mechanical systems defined by them.

The crucial thing here is that, just as in pure bosonic case, the isometries of Kähler space
(Killing potentials) became isometries of the corresponding Hamiltonian system. Namely linear
combinations presented in (41) correspond to the superconformal generators of the system, while
expressions in (42)-(44) correspond to the additional symmetry generators (bosonic and fermionic).

One can write these generators in canonical coordinates using the following transformations

𝑤 =
𝑝𝑟

𝑟
− 𝚤
𝑔 + ∑𝑁−1

𝛼=1 𝜋𝛼 − ∑𝑀
𝐴=1 𝚤𝜒

𝐴 �̄�𝐴

𝑟2 , 𝑧𝛼 =

√
2𝜋𝛼
𝑟

e𝚤𝜑𝛼 , 𝜃𝐴 = −
√

2
𝑟
𝜒𝐴. (45)

where

{𝑟, 𝑝𝑟 } = 1, {𝜑𝛽 , 𝜋𝛼} = 𝛿𝛼𝛽, {𝜒𝐴, �̄�𝐵} = 𝛿𝐴�̄�, 𝜋𝑎 ≥ 0, 𝜑𝑎 ∈ [0, 2𝜋), 𝑟 > 0. (46)

The relation with the canonical coordinates in (20) is as follows

𝑝𝑁 =
𝑝2
𝑟

4
+ 1

4

(
𝑟 −

√
2I
𝑟

)2

, 𝑝𝛼 = 𝜋𝛼, 𝜒𝐴 = 𝜒𝐴. (47)

In our next coming paper [14] we are going to give a several examples of 𝑠𝑢(1.𝑁 |𝑀) super-
conformal systems with Euclidian configuration spaces, that can be formulated in the framework
considered above. As well as we are going to define and study the 2𝑀-extended supersymmetric
maximally superintegrable oscillator-like and Coulomb-like systems.
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