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1. Introduction

The 𝑁-dimensional free particle, isotropic oscillator and particle moving in the Coulomb
potential are the simplest maximally superintegrable systems. Apart from the Liouville integrals,
such systems have 𝑁 − 1 additional constants of motion. Due to them, the orbits of the classical
bounded motion are closed. For quantum systems, the superintegrability leads to a hight degeneracy
of energy levels and an exact expression for the wavefunctions. The entire symmetry of the
free-particle, oscillator and Coulomb systems constitute, correspondingly, the Euclidean 𝐸 (𝑁),
unitary 𝑈 (𝑁) and (pseudo)orthogonal 𝑆𝑂 (𝑁 + 1)/𝑆𝑂 (1, 𝑁) groups, which are responsible for
the superintegrability. They all contain the 𝑆𝑂 (𝑁) rotational subgroup, which is the symmetry
of the angular part of the above Hamiltonians. The described models lie at the origin of many
(super)integrable models of classical and quantum mechanics.

Treating each coordinate as a separate particle in one dimension, one can turn on an interaction
between them. In particular, the inverse-square potential, introduced by Calogero, significantly
complicates the above systems [1–5]. Nevertheless, it preserves the superintegrability [6–9]. In
the quantum case, the Calogero potential can be involved into a covariant derivative with flat
connection, bringin closer to the original system [10, 11]. It was first introduced by Dunkl and
contains particle-exchange operators [12]. As a result, the Calogero model (unbound or bound by
oscillator or Coulomb potential) can be regarded as a Dunkl-operator deformation of the underlying
system without particle interaction. The related symmetries are deformed as well. Their generators
together with the exchange operators form a quadratic algebra [9, 13–15].

Moreover a nonlocal gauge (similarity) transformation eliminates the connection together with
the Calogero potential [16]. For indistinguishable bosons or fermions, it just shifts the ground-state
energy level in the bound spectrum ensuring an equivalence with the related noninteracting system.
Recently, a modified analog of this transformation have been applied in order to construct Calogero-
type model with more general inverse-square interaction, containing also three-particle terms [17].
In contrast to the pure Calogero case, here most wavefunctions of the noninteracting oscillators
are mapped to non-normalizable states. In the current talk, we introduce a simpler 𝑈 (1) gauge
transform in 𝑁-dimensional space, which produce not only similar-type inverse-square potentials
but also but also terms linear in momentum. It is equivalent to inclusion of the Aharonov-Both
type magnetic potential which is inverse in coordinates. For quantum case, the momentum shift is
reminiscent the truncated Dunkl operator without the particle exchanges. For an imaginary phase,
the map produces non-Hermitian 𝑃𝑇-invariant Hamiltonians.

2. Canonical mapping of classical Hamiltonians

Consider the following transformation of the phase space variables of an 𝑁-dimensional system,
which mixes the coordinate and momentum:

𝑝′𝑖 = 𝑝𝑖 +
∑︁

1≤ |𝑖− 𝑗 | ≤𝑟

𝑓

𝑥𝑖 − 𝑥 𝑗

, 𝑥 ′𝑖 = 𝑥𝑖 . (1)
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It depends on an integral parameter 𝑟 ≤ 𝑁−1. For the classical systems, the above relation describes
a canonical map with singularities at the hyperplanes 𝑥𝑖 = 𝑥 𝑗 with |𝑖 − 𝑗 | ≤ 𝑟:

𝑁∑︁
𝑖=1

𝑝′𝑖𝑑𝑥
′
𝑖 =

𝑁∑︁
𝑖=1

𝑝𝑖𝑑𝑥𝑖 + 𝑑 log 𝐹 𝑓 , 𝐹 =
∏

1≤𝑖− 𝑗≤𝑟
|𝑥𝑖 − 𝑥 𝑗 |, (2)

so that the new variables obey the standard Poisson brackets,

{𝑝′𝑖 , 𝑥 𝑗} = 𝛿𝑖 𝑗 , {𝑝′𝑖 , 𝑝′𝑗} = 0.

Note that the primed momentum can be interpreted as a generalized momentum in the
Aharonov-Bohm like magnetic potential

𝐴𝑖 = 𝜕𝑖 log 𝐹 𝑓 . (3)

First, let us consider the free-particle system. It is easy to see that the above transformation
maps it to an equivalent model with the two-particle and three-particle distant interactions,

𝐻 =

𝑁∑︁
𝑖=1

𝑝′2
𝑖

2
=

𝑁∑︁
𝑖=1

𝑝2
𝑖

2
+

∑︁
1≤𝑖− 𝑗≤𝑟

(
𝑓 2

(𝑥𝑖 − 𝑥 𝑗)2 + 𝑓
𝑝𝑖 − 𝑝 𝑗

𝑥𝑖 − 𝑥 𝑗

)
−

∑︁
𝑖< 𝑗<𝑘

𝑟<𝑘−𝑖≤2𝑟

𝑓 2

(𝑥𝑖 − 𝑥 𝑗) (𝑥 𝑗 − 𝑥𝑘)
. (4)

Of course, the above system is superintegrable with integrals of motion given by the momentum 𝑝′
𝑖

and angular momentum 𝐿 ′
𝑖 𝑗
= 𝑥𝑖𝑝

′
𝑗
− 𝑥 𝑗 𝑝

′
𝑖
with the standard Poisson brackets between them.

It is well known that both the isotropic harmonic and Coulomb potentials preserve the super-
integrability. Apply the following notations for the corresponding Hamiltonians:

𝐻𝜔 = 𝐻 + 𝜔2𝑟2

2
, 𝐻𝛾 = 𝐻 − 𝛾

𝑟
, 𝑟2 =

∑︁
𝑖

𝑥2
𝑖 . (5)

The integrals of motion in the first case form the 𝑢(𝑁) Lie algebra with the angular momentum and
Fradkin tensor 𝑇 ′

𝑖 𝑗
= 𝑥𝑖𝑥 𝑗 + 𝑝′

𝑖
𝑝′
𝑗
. In the Coulomb case, the symmetry forms the 𝑠𝑜(4) or 𝑠𝑜(1, 3)

Lie algebra (depending on whether the energy is negative or positive). The generators are expressed
via the angular momentum, Hamiltonian 𝐻𝛾 , and the Runge-Lenz vector 𝐴′

𝑖
=

∑
𝑗 𝑥 𝑗𝐿

′
𝑖 𝑗
− 𝛾𝑥𝑖/𝑟 .

Of course, the canonical map (1) may be applied to other models. The obtained Hamiltonians
look quite close to the rational Calogero model, which describes the motion of one-dimensional
particles with pairwise inverse-square interaction [1, 2]. The Calogero model with and without
the oscillator or Coulomb potentials, is maximally superintegrable [6–9]. The shifted version is
governed by the following Hamiltonian:

𝐻𝑔 =
∑︁
𝑖

𝑝′2
𝑖

2
+

∑︁
𝑖< 𝑗

𝑔2

(𝑥𝑖 − 𝑥 𝑗)2 =
∑︁
𝑖

𝑝2
𝑖

2
+

∑︁
1≤𝑖− 𝑗≤𝑟

(
𝑓 2 + 𝑔2

(𝑥𝑖 − 𝑥 𝑗)2 + 𝑓
𝑝𝑖 − 𝑝 𝑗

𝑥𝑖 − 𝑥 𝑗

)
+

∑︁
𝑖− 𝑗>𝑟

𝑔2

(𝑥𝑖 − 𝑥 𝑗)2 −
∑︁

𝑖< 𝑗<𝑘
𝑟<𝑘−𝑖≤2𝑟

𝑓 2

(𝑥𝑖 − 𝑥 𝑗) (𝑥 𝑗 − 𝑥𝑘)
.

(6)
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Note that in 𝑟 = 𝑁 − 1 case, the last two terms in the Hamiltonian (6) disappear, and the system
becomes invariant under particles exchanges.

Clearly, the constructed model is superintegrable too. The Lax matrix is inherited from the
Calogero model [2]

L𝑖 𝑗 = 𝛿𝑖 𝑗 𝑝
′
𝑖 + (1 − 𝛿𝑖 𝑗)

𝚤𝑔

𝑥𝑖 − 𝑥 𝑗

,

where the 𝑝′
𝑖

is defined by (1). It defines the Liouville integrals of motion 𝐼𝑛 = Tr L𝑛 for 𝑛 ≤ 𝑁 .
The additional integrals may be defined by taking their Poisson brackets with the angular part of
the Hamiltonian 𝐻𝑔 alike in non-deformed ( 𝑓 = 0) case [19].

Note that the Hamiltonian (6) is reminiscent of the classical version of the truncated Calogero
model without external harmonic potential. The later contains both the two-body and three-body
inverse-square interactions with restricted interaction distance between particles [17]. Let us apply
the canonical transformation (1) to the truncated Calogero model with the particular choice for
restriction parameter equal to 𝑟 ,

𝐻𝑔,𝑟 =

𝑁∑︁
𝑖=1

𝑝′2
𝑖

2
+

∑︁
1≤𝑖− 𝑗≤𝑟

𝑔2

(𝑥𝑖 − 𝑥 𝑗)2 −
∑︁

𝑖< 𝑗<𝑘
𝑟<𝑘−𝑖≤2𝑟

𝑔2

(𝑥𝑖 − 𝑥 𝑗) (𝑥 𝑗 − 𝑥𝑘)

=

𝑁∑︁
𝑖=1

𝑝2
𝑖

2
+

∑︁
1≤𝑖− 𝑗≤𝑟

(
𝑓 2 + 𝑔2

(𝑥𝑖 − 𝑥 𝑗)2 + 𝑓
𝑝𝑖 − 𝑝 𝑗

𝑥𝑖 − 𝑥 𝑗

)
−

∑︁
𝑖< 𝑗<𝑘

𝑟<𝑘−𝑖≤2𝑟

𝑓 2 + 𝑔2

(𝑥𝑖 − 𝑥 𝑗) (𝑥 𝑗 − 𝑥𝑘)
.

(7)

3. Gauge transformation of quantum systems

In the quantum case, the canonical map (1), (2) is generated by the following gauge transfor-
mation acting on any function 𝐺 depending on the phase space variables:

𝐺 (𝑝𝑖 , 𝑥𝑖) → 𝑈−1𝐺 (𝑝𝑖 , 𝑥𝑖)𝑈 = 𝐺 (𝑝′𝑖 , 𝑥𝑖) (8)

with 𝑝𝑖 = −𝚤𝜕𝑖 . Here the local 𝑈 (1) phase

𝑈 = 𝐹𝚤 𝑓 = exp ©«𝚤 𝑓
∑︁

1≤𝑖− 𝑗≤𝑟
ln |𝑥𝑖 − 𝑥 𝑗 |

ª®¬ (9)

defines an unitary shift which does not contain any singularity.
In particular, the free particle is mapped to the following system:

𝐻 = 𝑈+

(
𝑁∑︁
𝑖=1

𝑝2
𝑖

2

)
𝑈 =

𝑁∑︁
𝑖=1

𝑝′2
𝑖

2

=

𝑁∑︁
𝑖=1

𝑝2
𝑖

2
+

∑︁
1≤𝑖− 𝑗≤𝑟

(
𝑓 ( 𝑓 + 𝚤)
(𝑥𝑖 − 𝑥 𝑗)2 + 𝑓

𝑥𝑖 − 𝑥 𝑗

(𝑝𝑖 − 𝑝 𝑗)
)
−

∑︁
𝑖< 𝑗<𝑘

𝑟<𝑘−𝑖≤2𝑟

𝑓 2

(𝑥 𝑗 − 𝑥𝑖) (𝑥𝑖 − 𝑥𝑘)
.

(10)
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Note that the quantum corrections make the coefficient in front of the inverse-square potential a
complex number [compare with (4)]. The classical coefficient recovers upon applying the anticom-
mutator in the momentum term:

𝐻 =

𝑁∑︁
𝑖=1

𝑝2
𝑖

2
+

∑︁
1≤𝑖− 𝑗≤𝑟

(
𝑓 2

(𝑥𝑖 − 𝑥 𝑗)2 +
{

𝑓

𝑥𝑖 − 𝑥 𝑗

,
𝑝𝑖 − 𝑝 𝑗

2

})
−

∑︁
𝑖< 𝑗<𝑘

𝑟<𝑘−𝑖≤2𝑟

𝑓 2

(𝑥 𝑗 − 𝑥𝑖) (𝑥𝑖 − 𝑥𝑘)
.

The Hermiticity of the Hamiltonian becomes transparent in this form.
Obviously, the unitary map (8) does not change the spectrum. It just produces the local phase

factor in front of the wavefunctions. For the usual plane waves, we have:

𝜓𝑘1...𝑘𝑁 (𝑥) = 𝑒𝚤
∑

𝑖 𝑘𝑖 𝑥𝑖−𝚤 𝑓
∑

1≤𝑖− 𝑗≤𝑟 ln |𝑥𝑖−𝑥 𝑗 |

with continuous momenta 𝑘𝑖 defining the spectrum,

𝐸𝑘1...𝑘𝑁 =

𝑁∑︁
𝑖=1

𝑘2
𝑖

2
.

Consider the system bound by the harmonic potential 𝐻𝜔 (5) with unit frequency, 𝜔 = 1. For
𝑟 = 1, when there are only the nearest-neighbouring interactions, this system was already studied
[20]. Recalling the energy eigenfunctions of the usual isotropic oscillator, one can immediately
write those for the current Hamiltonian (without the normalization constant),

𝜓𝑘1...𝑘𝑁 (𝑥) = 𝑒−
1
2 𝑟

2−𝚤 𝑓 ∑
1≤𝑖− 𝑗≤𝑟 ln |𝑥𝑖−𝑥 𝑗 |

𝑁∏
𝑖=1

𝐻𝑘𝑖 (𝑥𝑖), (11)

where 𝑘𝑖 ≥ 0 are integral numbers, and the 𝐻𝑘 (𝑥) is the 𝑘-th order Hermite polynomial. The
corresponding eigenvalues are the same as that of the free oscillators:

𝐸𝑘1...𝑘𝑁 =

𝑁∑︁
𝑖=1

𝑘𝑖 +
𝑁

2
. (12)

For the bound motion in the Coulomb potential (5) with unit constant, 𝛾 = −1, the energy
spectrum is quantized thought the principal quantum number 𝑛,

𝐸𝑛 = − 1
2𝑛2 , with 𝑛 = 𝑛𝑟 + 𝑙 + 𝑁 − 1

2
, (13)

where 𝑛𝑟 , 𝑙 = 0, 1, . . . are the radial and angular momentum quantum numbers, respectively. The
wavefunctions (without normalization) are expressed via the associated Laguerre polynomials:

𝜓𝑛𝑙 (𝑥) = 𝑒−
1
𝑛
𝑟−𝚤 𝑓 ∑

1≤𝑖− 𝑗≤𝑟 ln |𝑥𝑖−𝑥 𝑗 |𝐿2𝑙+𝑁−2
𝑛𝑟

(2𝑟
𝑛

)
ℎ𝑙 (𝑥). (14)

Here the ℎ𝑙 (𝑥) is an homogeneous harmonic polynomial of degree 𝑙, which is proportional to
the hyperspherical harmonics. Apart from the angular momentum, it depends also on other 𝑁 −
2 quantum numbers which are not indexed here. Such numbers characterize the states of the
corresponding 𝑆𝑂 (𝑁) representation with angular momentum 𝑙,

𝐿2ℎ𝑙 (𝑥) =
∑︁
𝑖< 𝑗

𝐿2
𝑖 𝑗ℎ𝑙 (𝑥) = 𝑙 (𝑙 + 𝑁 − 2)ℎ𝑙 (𝑥).

5
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4. Shifted quantum Calogero model

For indistinguishable particles, the following parametrization for the coupling constant is more
convenient for the quantum Calogero model (6),

𝐻𝑔 =

𝑁∑︁
𝑖=1

𝑝′2
𝑖

2
+

∑︁
𝑖< 𝑗

𝑔(𝑔 ∓ ℏ)
(𝑥𝑖 − 𝑥 𝑗)2 . (15)

The (+) and (−) sign is set for the fermions and bosons, respectively. The Plank’s constant is
recovered here in order to match with the classical case (15). In the following, we will set it to unity
again (ℏ = 1) and consider solely the the bosonic particles with the minus sign in the potential.

The explicit form of the Hamiltonian follows immediately from the expression (10),

𝐻𝑔 =
∑︁
𝑖

𝑝2
𝑖

2
+

∑︁
1≤𝑖− 𝑗≤𝑟

(
𝑓 ( 𝑓 + 𝚤) + 𝑔(𝑔 − 1)

(𝑥𝑖 − 𝑥 𝑗)2 + 𝑓

𝑥𝑖 − 𝑥 𝑗

(𝑝𝑖 − 𝑝 𝑗)
)
+

∑︁
𝑖− 𝑗>𝑟

𝑔(𝑔 − 1)
(𝑥𝑖 − 𝑥 𝑗)2

−
∑︁

𝑖< 𝑗<𝑘
𝑟<𝑘−𝑖≤2𝑟

𝑓 2

(𝑥𝑖 − 𝑥 𝑗) (𝑥 𝑗 − 𝑥𝑘)
.

(16)

The above Hamiltonian is closely related to another model usually referred as a generalized
Calogero model with the particle exchanges involved in the potential [10, 11]. Applying the unitary
shift (9) to the generalized Calogero model itself, we get:

�̃�𝑔 =

𝑁∑︁
𝑖=1

𝜋2
𝑖

2
=

𝑁∑︁
𝑖=1

𝑝′2
𝑖

2
+

∑︁
𝑖< 𝑗

𝑔(𝑔 − 𝑀 ′
𝑖 𝑗
)

(𝑥𝑖 − 𝑥 𝑗)2 , 𝑀 ′
𝑖 𝑗 = 𝑈+𝑀𝑖 𝑗𝑈. (17)

Here the exchange operator 𝑀𝑖 𝑗 permutes the coordinates of the 𝑖-th and 𝑗-th particles. For
indistinguishable particles, 𝑀𝑖 𝑗 = ±1, depending on whether they are bosons or fermions, and
the above Hamiltonian is reduced to the usual Calogero model (15). The deformed momentum is
defined through the covariant derivative, expressed in terms of the shifted Dunkl operator [12],

∇𝑖 = 𝜕𝑖 +
∑︁
𝑗≠𝑖

𝚤 𝑓

𝑥𝑖 − 𝑥 𝑗

−
∑︁
𝑗≠𝑖

𝑔

𝑥𝑖 − 𝑥 𝑗

𝑀 ′
𝑖 𝑗 , 𝜋𝑖 = −𝚤∇𝑖 . (18)

Remember that the Dunkl operators obey a deformed Heisenberg algebra relations, which, of course,
are not affected by the gauge transformation 𝑈,

[∇𝑖 ,∇ 𝑗] = 0, [∇𝑖 , 𝑥 𝑗] = 𝑆𝑖 𝑗 . (19)

Here the symmetric matrix 𝑆𝑖 𝑗 depends of the particle-permutation operators,

𝑆𝑖 𝑗 = (𝛿𝑖 𝑗 − 1)𝑔𝑀 ′
𝑖 𝑗 + 𝛿𝑖 𝑗

(
1 + 𝑔

∑︁
𝑘≠𝑖

𝑀 ′
𝑖𝑘

)
. (20)

Notice that at a first glance, the flat connection in the covariant derivative can be eliminated
by the gauge transformation mapping the model (17) to the free particles. However, this map is
complicate due to the exchange terms. For the Hamiltonian (15) in the harmonic potential this
results in an overall shift of the energy spectrum [21].
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The Calogero model with particle exchanges (17) and its oscillator �̃�𝑔,𝜔 and Coulomb �̃�𝑔,𝛾

versions (5) are superintegrable. The corresponding integrals of motion are reminiscent of those
for the free particle, isotropic oscillator and Coulomb system, correspondingly. The integrals of
motion are obtained by substituting the usual momentum by the Dunkl momentum: 𝑝′

𝑖
→ 𝜋𝑖 , see,

for example, [8, 10, 11, 13, 14, 18] for the non-shifted case ( 𝑓 = 0).
Symmetric polynomials in such Dunkl-deformed integrals produce the constants of motion for

the pure Calogero model (15), (16). In particular, the Newton powers

𝑁∑︁
𝑖=1

𝜋𝑛𝑖 ,

𝑁∑︁
𝑖=1

(𝑎+𝑖 𝑎𝑖)𝑛

with 𝑛 ≤ 𝑁 reproduces the complete set of Liouville integrals of the Hamiltonians 𝐻𝑔 and 𝐻𝑔,𝜔 ,
respectively [10]. Here the 𝑎±

𝑖
are the staircase operators, which generate the spectrum of the

Calogero-oscillator Hamiltonian with particle exchanges:

𝑎±𝑖 =

√︂
𝜔

2
𝑥𝑖 ∓

∇𝑖√
2𝜔

, 𝐻𝑔,𝜔 =
𝜔

2

𝑁∑︁
𝑖=1

(𝑎+𝑖 𝑎𝑖 + 𝑎𝑖𝑎
+
𝑖 ), [𝐻𝑔,𝜔, 𝑎

±
𝑖 ] = ±𝜔𝑎±𝑖 .

The eigenstates of the Calogero model are restricted to the symmetric functions on particle
coordinates (to the antisymmetric ones, for fermions) [1]. In the Calogero-oscillator case 𝐻𝑔,𝜔=1,
they may be written as follows:

𝜓𝑘1...𝑘𝑁 (𝑥) = 𝑒−𝚤 𝑓
∑

1≤𝑖− 𝑗≤𝑟 ln |𝑥𝑖−𝑥 𝑗 |𝐴𝑘1
1 𝐴

𝑘2
2 . . . 𝐴

𝑘𝑁
𝑁

𝑒−
1
2 𝑟

2
, 𝐴𝑙 =

𝑁∑︁
𝑖=1

(𝑎+𝑖 )𝑙, (21)

where 𝑘𝑖 = 0, 1, 2, . . . are integral numbers (see, for instance, [22]) and the non-shifted staircase
operators 𝑎+

𝑖
(with 𝑓 = 0) are used. The corresponding spectrum coincides with the one of the

original Calogero-oscllator model:

𝐸𝑘1...𝑘𝑁 = 1
2𝑁 (𝑔(𝑁 − 1) + 1) +

𝑁∑︁
𝑙=1

𝑙𝑘𝑙 . (22)

Note that the fist term is just the ground-state energy.

5. Non-Hermitian 𝑃𝑇-invariant Hamiltonians

Finally, consider the transformation (8), (9) with an imaginary phase. Keeping the old notation,
we just make anywhere the substitution 𝑓 → 𝚤 𝑓 so that

𝑈 = 𝐹− 𝑓 =
∏

1≤𝑖− 𝑗≤𝑟
|𝑥𝑖 − 𝑥 𝑗 |− 𝑓 . (23)

This is not an unitary map any more so the shifted Hamiltonians become now non-Hermitian.
But they, of course, preserve the spectrum. In addition, they remain invariant under the simulta-
neous application of the parity transformation 𝑃 and time reversal 𝑇 . The 𝑃𝑇 transformation is
characterized by the map 𝑥𝑖 → −𝑥𝑖 and 𝚤 → −𝚤.
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It is easy to see, in particular, that a non-Hermitian version of the system (10) is given by the
Hamiltonian

𝐻 = −
𝑁∑︁
𝑖=1

𝜕2
𝑖

2
−

∑︁
1≤𝑖− 𝑗≤𝑟

(
𝑓 ( 𝑓 − 1)
(𝑥𝑖 − 𝑥 𝑗)2 − 𝑓

𝑥𝑖 − 𝑥 𝑗

(𝜕𝑖 − 𝜕 𝑗)
)
+

∑︁
𝑖< 𝑗<𝑘

𝑟<𝑘−𝑖≤2𝑟

𝑓 2

(𝑥 𝑗 − 𝑥𝑖) (𝑥𝑖 − 𝑥𝑘)
. (24)

Note that the following term here spoils the Hermiticity but still obeys the 𝑃𝑇 symmetry:

𝑓

𝑥𝑖 − 𝑥 𝑗

(𝜕𝑖 − 𝜕 𝑗). (25)

Note that recently complex deformations of integrable models, related especially to the
Calogero-type models, which preserve both the (super)integrability and 𝑃𝑇 symmetry, has been
quite popular subject of investigation (see, for example, [24, 25] and references therein). Inspired
by this activity, let us apply the same conjugation (23) also to the Calogero model (15) in order to
arrive at its non-Hermitian extension:

𝐻𝑔 =
∑︁
𝑖

𝑝2
𝑖

2
+

∑︁
1≤𝑖− 𝑗≤𝑟

(
𝑔(𝑔 − 1) − 𝑓 ( 𝑓 − 1)

(𝑥𝑖 − 𝑥 𝑗)2 + 𝑓

𝑥𝑖 − 𝑥 𝑗

(𝜕𝑖 − 𝜕 𝑗)
)
+

∑︁
𝑖− 𝑗>𝑟

𝑔(𝑔 − 1)
(𝑥𝑖 − 𝑥 𝑗)2

+
∑︁

𝑖< 𝑗<𝑘
𝑟<𝑘−𝑖≤2𝑟

𝑓 2

(𝑥𝑖 − 𝑥 𝑗) (𝑥 𝑗 − 𝑥𝑘)
.

(26)

For 𝑟 = 𝑁−1 case when the distance of interactions is not restricted, the above model simplifies
drastically. It is reduced to the Calogero model with modified coupling and additional terms (25)
linear in momentum [23]:

𝐻𝑔 =
∑︁
𝑖

𝑝2
𝑖

2
+

∑︁
𝑖< 𝑗

(
𝑔(𝑔 − 1) − 𝑓 ( 𝑓 − 1)

(𝑥𝑖 − 𝑥 𝑗)2 + 𝑓

𝑥𝑖 − 𝑥 𝑗

(𝜕𝑖 − 𝜕 𝑗)
)
. (27)

In case of an equal value of both couplings, 𝑓 = 𝑔, the inverse-square interaction disappears, and
system is reduced to the gauged Calogero Hamiltonian, which may be considered as a Laplace
operator deformed by a terms which are linear in momentum,

𝐻 𝑓 = −1
2

∑︁
𝑖

𝜕2
𝑖 +

∑︁
𝑖< 𝑗

𝑓

𝑥𝑖 − 𝑥 𝑗

(𝜕𝑖 − 𝜕 𝑗).
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