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1. Introduction

On physical application of quaternions one can find thousands of publications [1]. The most

commonly quaternions are used in the areas of computer graphics, navigation systems, quantum

physics and kinematics (see [2–5] and references therein). It is known that ordinary (Hamilton’s)

and split quaternions can be used to describe 3-dimensional Euclidean and Minkowski spaces,

respectively. Here we consider vector and spinor representations in (2+2)-space of split quaternions,

which generates kinematics of 3-dimensional Minkowski space-times [6].

Algebra of split quaternions over reals is an associative, non-commutative ring, the general

element of which can be written as the linear combination of four basis elements, 40 = 1 and 4:

(: = 1, 2, 3), with the real coefficients @0 and @: ,

@ = @0 + @:4: = @0 + @141 + @242 + @343 . (: = 1, 2, 3) (1)

The first basis element 40 = 1 is real, while the other three, 4: , are anti-commuting hyper-complex

units. Using algebra of 4: it can be shown that one of the hyper-complex basis elements, for example

the last one 43, is possible to define as the product of other two,

43 = 4142 = −4241 . (2)

The quaternion algebra is associative and therefore can be represented by matrices. For

example, we get the simplest non-trivial representation of the basis element of split quaternions by

the unit matrix and the three traceless (2 × 2)-matrices of the (! (2, ')-algebra,

40 = (1) =

(

1 0

0 1

)

, 41 =

(

1 0

0 −1

)

, 42 =

(

0 1

1 0

)

, 43 = 4142 =

(

0 1

−1 0

)

. (3)

In this representations split quaternion (1) uniquely corresponds to the 2 × 2 real matrix,

@(! (2,') =

(

(@0 + @1) (@2 + @3)

(@2 − @3) (@0 − @1)

)

. (4)

To represent the basis units of split quaternions in (3), instead of the three real (! (2, ')-matrices

one can use the complex (* (1, 1)-matrices,

40 =

(

1 0

0 1

)

, 41 =

(

0 −8

8 0

)

, 42 =

(

0 1

1 0

)

, 43 =

(

−8 0

0 8

)

, (5)

where 8 is the ordinary complex unit. So, any split quaternion (1) has the following (* (1, 1)-matrix

representation:

@(* (1,1) =

(

(@0 − 8@3) (@2 − 8@1)

(@2 + 8@1) (@0 + 8@3)

)

, (6)

which can be obtained from the (! (2, ')-matrix representation (4) by the replacements @1 → −8@3

and @3 → −8@1.

In analogy with complex numbers, the quaternionic conjugation, which changes the sign of the

hyper-complex basis elements, is defined as:

4∗0 = 40 , 4∗1 = −41 , 4∗2 = −42 , 4∗3 = (4142)
∗
= 4∗24

∗
1 = −4142 = −43 . (7)
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Then the inverted (conjugated) quaternion can be constructed:

@∗ = @0 − @141 − @242 − @343 . (8)

Note that the two main basis units of split quaternions have the feature of unit polar vectors,

42
1 = 42

2 = 1 , (9)

while the third hyper-complex basis element, 43 = 4142, behaves like a complex unit,

42
3 = (4142) (4142) = −42

14
2
2 = −1 , 4∗3 = −43 . (10)

Because of these distinct properties of basis elements, the norm of a split quaternion,

# =

√

|@@∗ | =

√

|@2
0 − @2

1 − @2
2 + @2

3 | , (11)

has (2+2)-signature and in general @@∗ is not positively defined.

For geometrical applications, we can define the line element in the space of split quaternions

in the form [6]:

B = _ + 41G + 42H + 43C , (12)

where the four real parameters that multiply basis units, 1 and 4: , denotes: some time-like quantity

_, the spatial coordinates G and H and the time coordinate C (for speed of light we set 2 = 1). Using

the conjugation rules one can find that the norm of (12) (the interval),

BB∗ = B∗B = _2 − G2 − H2 + C2 , (13)

has (2+2)-signature and in general is not positively defined. As in the standard relativity we require

BB∗ ≥ 0 , (14)

i.e. we restrict ourself to time-like split quaternions.

2. Zero divisors

In split algebras the special singular objects, zero divisors, can be constructed [7]. These critical

elements of the algebra, which are similar to light-cone variables in Minkowski space-time, could

serve as the unit signals characterizing physical events. The norms of split quaternions (11) have

(2+2)-signature and thus we have two different types of ’light-cones’. Correspondingly, two types

of zero divisors, idempotent elements (projection operators) and nilpotent elements (Grassmann

numbers) [7].

At first let us consider the idempotent quaternions, which have the property that they coincide

with their squares. A non-zero split quaternion � fulfills this condition if and only if #� = 0 and

@0 = 1/2. In the algebra there exist two classes (totally four) primitive idempotents,

�±
1 =

1

2
(1 ± 41) , �±

2 =
1

2
(1 ± 42) . (1)
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These two classes do not commute with each other. The commuting ones with the standard

properties of projection operators:

�±�∓
= 0 , �±�±

= �± , (2)

are only the pairs (�+
1 , �

−
1 ), or (�+

2 , �
−
2 ).

The operators �+
1,2 and �−

1,2 differ from each other by the reflection of hyper-complex basis

element and thus correspond to the direct and reverse critical signals along one of the two real

directions, 41 or 42, and turn into each other by quaternionic conjugations,

(�±
1 )

∗
=

1

2
(1 ∓ 41) = �∓

1 , (�±
2 )

∗
=

1

2
(1 ∓ 42) = �∓

2 . (3)

They satisfy also to the conditions:

�+
1 + �−

1 = �+
2 + �−

2 = 1 . (4)

We can characterize �1 and �2 as primitive idempotent quaternions, since, in contrast to 1, may

no longer be decomposed into the sum of idempotents and non-zero quaternions. One can show

that �−
1 and �−

2 are the only primitive quaternion that is independent of �+
1 and �+

2 , respectively.

In the algebra of split quaternions we have also two classes (totally four) of primitive nilpotents,

�±
1 =

1

2
(42 ± 43) =

1

2
(1 ± 41)42 , �±

2 =
1

2
(41 ∓ 43) =

1

2
(1 ± 42)41 , (5)

with the properties

�±�∓
= �± , �±�±

= �±�∓
= �± , �±�±

= �±�∓
= �±�±

= 0 , (6)

for each index, 1 or 2. Quaternionic conjugations of the nilpotents give the same element with the

opposite signs,

(�±
1 )

∗
= −

1

2
(42 ± 43) = −�±

1 , (�±
2 )

∗
= −

1

2
(41 ∓ 42) = −�±

2 . (7)

3. Quaternions and triality

The triality algebra of split quaternions can be defined as:

U1(?@) = U2(?)@ + ?U3(@) , (1)

where ? and @ denote some split quaternions and U1, U2 and U3 are unit quaternions that generate

($ (2, 1) rotations from the full ($ (2, 2) group of symmetry of the norms of split quaternions .

In the formulations of ($ (2, 2) representations of vector, �, covariant spinor, b, and con-

travariant spinor, j, in terms of quaternions, the relationships between the three may be expressed

without gamma matrices. For example, a covariant and a contravariant spinor can be used to form

a vector

� = bj∗ , (2)
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or a contravariant spinor can be made from a vector and a covariant spinor

j = �∗b , (3)

or a covariant spinor can be made from a vector and a contravariant spinor

b = �j . (4)

Supposing that all three objects �, b and j are transformed by a priori unrelated unit quaternions

U1, U2 and U3 and still insisting that � is made from b and j, these transformations would have

to be related. This relation is exactly the condition that defines triality (1) and we are led to the

conclusion that the triality transformations is the largest group that preserves (2). However, these

transformations are exactly of the form used in supersymmetry (see, for example [8]), so it is only

natural that the overall symmetry of these theories is given by the triality algebras.

If �, b and j are quaternionic vector and covariant and contravariant spinors, respectively, then

the triality construction

Tri ≡ j�b (5)

is ($ (2, 1) invariant. This can be checked explicitly by applying to (5) spinor and vector transfor-

mation rules,

j′
= jU∗ , b ′ = Ub , �′

= U�U∗ . (6)

were U is a unit quaternion, i.e. UU∗
= 1.

The construction of division algebras from trialities has tantalizing links to physics. In the

Standard Model of particle physics, all particles (other than the Higgs boson) transform either as

vectors or spinors, and the interaction between matter and the forces is described by a trilinear

map (5), involving two spinors and one vector. Moreover, split normed algebras naturally intro-

duce pseudo-Euclidean spaces which are needed to describe physical spinors and vectors that are

associated to Lorentz-type groups.

4. Quaternionic gradient operator

In physical applications it is important to define the quaternionic gradient operator. Although

there have been some derivations of this operator in literature with different level of details (see,

[9–18] and references therein), it is still not fully clear how this operator can be written in the most

general case and how it can be applied to various quaternion-valued functions.

Employ analogy with complex analysis, we can define the split quaternionic derivative operator

in the form [12–14],
3

3B
=

1

2

(

m_ + 41mG + 42mH + 43mC
)

, (1)

such that its action upon interval quaternion (12) is equal to one,

3B

3B
=

1

2

(

1 + 42
1 + 42

2 + 42
3

)

= 1 , (2)

while if applied to conjugated interval element,

B∗ = _ − G41 − H42 − C43 , (3)

5
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it gives zero,
3B∗

3B
=

1

2

(

1 − 42
1 − 42

2 − 42
3

)

= 0 . (4)

Similarly, the conjugated gradient can be defined by the operator

3

3B∗
=

1

2

(

m_ − 41mG − 42mH − 43mC
)

, (5)

which annihilates B. Thus from the definitions of quaternionic gradients, (1) and (5), we find

3B∗

3B
=

3B

3B∗
= 0 . (6)

5. Analyticity condition

The main obstacle in physical applications of quaternions is that the real-valued functions of

quaternion variables Φ(@) are not analytic according to quaternion analysis [9–18]. To bypass

the issue of non-existent derivatives of real functions of quaternion variables, current applications

typically rewriteΦ(@) in terms of the four real components q0 (@0) (0 = 0, 1, 2, 3) of four quaternion

variables:

Φ(B, B∗) = q_ + 41qG + 42qH + 43qC , (1)

and take the real derivatives with respect to @0 [14]. Thus, analogously to the Cauchy-Riemann

equations from complex analysis,

mI∗ 5 (I, I
∗) = 0 , (I = G + 8H) (2)

the Cauchy-Riemann-Fueter condition of analyticity for quaternionic functions of quaternionic

variables can be written as [12–14],

3Φ(B, B∗)

3B∗
=

1

2

(

m_ − 41mG − 42mH − 43mC
)

Φ = 0 . (3)

This statement, that quaternionic functions should be independent of the variable B∗, represents the

condition that quaternionic derivative be independent of direction along which it is evaluated.

Note that the simple case of the quaternionic analyticity condition for interval vectors (6), due

to the existence of the relations of the type (4), holds only for split quaternions. This justifies in

split quaternionic calculus the use of the simple gradient operators (1) introduced in [12, 13]. For

ordinary quaternions, even the polynomial functions do not satisfy these Cauchy-Riemann-Fueter

conditions and several generalizations are necessary [14–18].

The coordinate transformations, e.g. @′ = U@, in general do not preserve the property of

analyticity, since unit split quaternions representing rotations and boosts are not analytic functions.

Thus, to construct analytic and invariant structures (Lagrangians, Superpotentials, etc), we need

combinations of spinor-like and vector-like split quaternions. For instance, if the transformation

laws of j, b and � have the forms,

j′
= jU∗ , b ′ = Ub , �′

= U�U∗ , (4)

6
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the invariant constructions are products of the type jb and j�b. Indeed,

(jb) ′ = j′b ′ = j U∗U b = jb ,

(j�b) ′ = j U∗U � U∗U b = j�b .
(5)

Then, using validity of the distribution law for quaternionic gradient operators (1) and (5) [12–14],

we can write Cauchy-Riemann-Fueter analyticity condition (3) for the triality invariant construction

(5) in the form:
3 (j�b)

3B∗
=

3j

3B∗
�b + j

3�

3B∗
b + j�

3b

3B∗
= 0 . (6)

This condition is equivalent to the system of equations for quaternionic vector and spinors of the

first and second kind (covariant and contravariant),

3�

3B∗
= 0 ,

3j

3B∗
= 0 ,

3b

3B∗
= 0 . (7)

Below we shall show that this system can be reduce to the equations of (2+1)-electrodynamics, i.e.

to the system of standard Dirac and Maxwell equations in 3-dimensional Minkowski space-time.

6. Quaternionic Dirac equation

Let us demonstrate that the algebraic Cauchy-Riemann-Fueter condition (7) for the covariant

spinor b can be understand as the Dirac equation. Analogous logic can be applied for the case of

the second kind (contravariant) spinor j to obtain Dirac equation for conjugated spinors.

Consider the first kind spinor b+,

b+ = (@0 − 8@3)�
+ + (@2 + 8@1)�

− , (1)

expressed in terms of the idempotent and nilpotent elements in (* (1, 1)-representation, where @=

are some real functions of _, G, H and C. We can make the replacement,

b+ (_, G, H, C) → 4<_b+(G, H, C) , (2)

were < is some real parameter. Then the condition (7) for the covariant spinor b takes the form:

(

m_ − 41mG − 42mH − 43mC + <
)

b+(G, H, C) = 0 . (3)

Next we assume that the derivative of the covariant split quaternion b+ (G, H, C) by the extra

time-like coordinate _ generates the supersymmetric (triality) transformation:

m_b
+
= �j+∗ , (4)

where � is some vector-type split quaternion, while j+∗ is the conjugated contravariant quaternionic

spinor in (* (1, 1)-representation:

j+∗ = (@0 − 8@3)�
+ − (@2 + 8@1)�

− . (5)

Then the quaternionic Cauchy-Riemann condition (3) obtains the form:

(

41mG + 42mH + 43mC − <
)

b+ − �j+∗ = 0 , (6)

7



P
o
S
(
R
e
g
i
o
2
0
2
0
)
0
0
7

Split-Quaternion Analyticity and (2+1)-Electrodynamics Merab Gogberashvili

or in matrix notation,
[(

−8mC + < mH − 8mG

mH + 8mG 8mC + <

)

+

(

�0 − 8�3 �2 − 8�1

�2 + 8�1 �0 + 8�3

) (

−1 0

0 1

)] (

@0 − 8@3

@2 + 8@1

)

= 0 . (7)

From the other hand, the (2+1)-dimensional Dirac equation for a massive particle has the form,

[

8W: (m: + 8�:) − <
]

Ψ(C, G, H) = 0 , (: = 1, 2, 3) (8)

where 8 denotes the standard complex unit, �: is the vector-potential and W3 plays the role of the

W0 matrix. As the (2+1)-gamma-matrices, we can use the split quaternionic basis elements in

(* (1, 1)-matrix representation,

8W1
= 41 =

(

0 −8

8 0

)

, 8W2
= 42 =

(

0 1

1 0

)

, 8W3
= 43 =

(

−8 0

0 8

)

, (9)

and identify the complex Dirac spinors Ψ(C, G, H) with the complex (* (1, 1)-representation of the

quaternionic spinor b+(C, G, H). Then the matrix form of (2+1)-Dirac equation (8) obtains the form:

[(

−8mC + < mH − 8mG

mH + 8mG 8mC + <

)

+

(

�C �G + 8�H

−�G + 8�H −�C

)] (

@0 − 8@3

@2 + 8@1

)

= 0 , (10)

where @= (C, G, H) denote the four real components of the complex Dirac spinor b+(C, G, H).

Than assuming

�0 = �C , �1 = �H , �2 = −�G , �3 = 0 , (11)

the quaternionic analyticity conditions (7) becomes equivalent to the complex (2+1)-Dirac equation

(10).

7. Quaternionic Maxwell equations

To write Maxwell’s equations in (2+1)-spaces with the signature

[:< = diag(+1, +1,−1) , (:, < = G, H, C) (1)

let us define the 3-potential �:
= (�G, �H, �C ) and the Faraday tensor,

�:<
= m:�< − m<�: , (2)

which has only three independent components. The relation between the vector potential and the

magnetic and electric fields can be done through

� = mG�H − mH�G , �G = mG�C − mC�G , �H = mH�C − mC�H . (3)

In covariant form, Maxwell’s equations in (2+1)-spaces are then

m:�
<:

= 9< , m: �̃
:
= 0 , (4)

8
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where 9C is the surface charge and 9G and 9H are surface currents. One can work out also the

differential Maxwell’s equations in (2+1)-spaces in terms of the fields,

mG�G + mH�H = 9C , mC�G − mH� = − 9G ,

mG�H − mH�G + mC� = 0 , mC�H + mG� = − 9H .
(5)

The split quaternion that contains the electromagnetic potentials we write as

� = �0 + 41�G + 42�H + 43�C , (6)

where �G , �H and �C are components of the (2+1)-vector and �0 corresponds to extra degree

of freedom in the quaternionic algebra. Using quaternionic gradient operator (5), the Cauchy-

Riemann-Fueter analyticity condition (7) for the vector potential (6) can be written in the form:
(

m_ − 41mG − 42mH − 43mC
)

� =
[

m_� −
(

41mG + 42mH + 43mC
)

�0 − �
]

= 0 . (7)

Here � denotes the quaternionic electro-magnetic field,

� =
(

41mG + 42mH + 43mC
) (

41�G + 42�H + 43�C

)

= −m:�
: − 41�H + 42�G + 43� , (8)

where �, �G and �H are components of the magnetic and electric fields (3).

As in (2), we separate the variable _ in the scalar part of the vector-potential (6) (with the unit

’charge’, < = 1),

m_�0 = �0 . (9)

Similar to the case of spinors (4), we also assume that the derivative of the vector part of (6) by the

extra time-like coordinate _ generates the supersymmetric (triality) transformations (� → bj),

m_
(

41�G + 42�H + 43�C

)

= 41 9G + 42 9H − 43 9C , (10)

where 9: are the components of the current vector, which is constructed by the covariant and

contravarint spinors 9 ∼ bj.

Using (9) and (10) the Cauchy-Riemann-Fueter analyticity condition (7) can be written as the

first order Maxwell system [19–21]:

� = �0 ,
(

41mG + 42mH + 43mC
)

�0 = −41 9G − 42 9H + 43 9C .
(11)

Utilize the auxiliary function �0 this system can be transferred to the single second order Maxwell’s

equation in (2+1)-space,
(

41mG + 42mH + 43mC
)

� = −41 9G − 42 9H + 43 9C . (12)

Indeed, the left side of this equation under the Lorenz gauge,

m:�
:
= mG�G + mH�H − mC�C = 0 , (13)

in (* (1, 1)-matrix representation has the form:
(

−8mC (mH − 8mG)

(mH + 8mG) 8mC

) (

−8� (�G + 8�H)

(�G − 8�H) 8�

)

=

=
(

mH�G − mG�H − mC�
)

40 +
(

mC�G − mH�
)

41 +
(

mC�H + mG�
)

42 +
(

mG�G + mH�H

)

43 .

(14)

Equating to zero the coefficients in front of the four quaternionic basis units, we obtain the system

of four real equations which are identical to the system of the Maxwell equations (5).

9
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8. Conclusions

In thi paper it was shown that the quaternion analyticity condition, analog of the Cauchy-

Riemann equations from complex analysis, applied to the triality invariant construction of split

quaternions, is equivalent to some system of differential equations for quaternionic spinors and

vectors. Assuming that derivatives by the extra time-like coordinate of quaternionic (2+2)-space

generate triality (supersymmetric) rotations of vectors and spinors, the analyticity equations is

reduced to the exact Dirac-Maxwell system in 3-dimensional Minkowski space-time.
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