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1. Introduction

In quantum field theory there is a class of solutions of field equations called "solitons". They
are solutions of nonlinear field equations and have finite energy. They can be identified as lumps
of energy that are localized in some finite area of space. We can consider either static or time-
dependent solutions. A so-called topological number can be assigned to them to characterize and
distinguish them from each other. The systems possessing this type of solutions are realizable in
condensed matter physics, though there is no evidence of them being associated with point-like
particles.

When we have a couple of solitons, they may interact with each other: either repel or attract
one another. The nature of the interaction depends on their respective topological numbers and
the parameters of the system. Some of the examples of solitons are objects like: strings, vortices,
instantons. The simplest soliton appears in the case of a single real scalar field in (1+1)-dimensional
space-time with Higgs potential. Other than the classical vacuum solution there exists a non-trivial
solution called kink. Each kink carries its own topological number that is determined, as in the
general case, from the mapping of the configuration space to the field space.

In systems possessing local symmetry vortex is the simplest soliton. It can appear as a
solution in complex scalar field theory with 𝑈 (1) local symmetry, including Higgs potential in
(2 + 1)-dimensional space-time. In the cosmological context they can be created during the phase
transitions that occurred after the Big Bang; in this context they are called cosmic strings. The fact
that they have not been discovered can be accounted for by the inflation era.

One of the interesting solitons is the ’t Hooft–Polyakov monopole (1974). Here the existence
of soliton-type solutions, i.e., monopoles, is related to the topology of the system, in particular,
the second homotopy group of the quotient space 𝐺/𝐻 (viewed as a smooth manifold), 𝜋2(𝐺/𝐻),
where G is a local gauge group and H is the subgroup of G which leaves the field space of solutions
invariant.

The possibility of the theoretical existence of solitons can be seen from the scale arguments
(Derrick 1964). Here we see the importance of the dimension and the symmetry of the system
under consideration as well as whether there is a Higgs potential or not. For example, in case a
system does not possess the local symmetry, there are no solitons in (𝑑 +1)-dimensional space-time
with 𝑑 > 2. They are also absent in purely gauge theories for 𝑑 ≠ 4.

2. Physical picture

Consider the following Lagrangian for a complex scalar field 𝜑(𝑥) in (2 + 1) - dimensional
space-time with U(1) gauge symmetry and Higgs potential [4]:

L = −1
4
𝐹`a𝐹

`a + (𝐷`𝜑) (𝐷`𝜑) −𝑉 (𝜑), (1)

where `, a = 0, 1, 2. (𝐷`𝜑)− denotes complex conjugation and summation is considered via the
repeated indices with the Minkowski metric tensor [`a = (1,−1,−1). Here 𝐷` = 𝜕` − 𝑖𝑒𝐴` , 𝜕` ≡
𝜕

𝜕𝑥`
, is a covariant derivative and 𝑒 = 𝑐𝑜𝑛𝑠𝑡.
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𝐹`a = 𝜕`𝐴a − 𝜕a𝐴`,

𝑉 (𝜑) = _

2
( |𝜑 |2 − 𝑣)2

are the field tensor and Higgs potential, respectively, 𝑣 and _ are real parameters.
The local 𝑈 (1) transformation for scalar field and gauge potential has the following form:

𝜑(𝑥) −→ 𝑒𝑖𝛼(𝑥)𝜑(𝑥),

𝐴` (𝑥) −→ 𝐴` (𝑥) +
1
𝑒
𝜕`𝛼(𝑥).

We are interested only in static configurations, that is 𝜑 = 𝜑(x), 𝐴𝑖 = 𝐴𝑖 (x), 𝐴0 = 0, where
𝑖 = 1, 2 and 𝜑(x) = 𝜑(𝑥1, 𝑥2), then for the energy functional we have

𝐸 [𝐴𝑖 , 𝜑] =
∫
R2

𝑑2𝑥

[
1
4
𝐹𝑖 𝑗𝐹

𝑖 𝑗 + (𝐷𝑖𝜑) (𝐷𝑖𝜑) + _

2
( |𝜑 |2 − 𝑣)2

]
. (2)

For finiteness of the energy we require {
|𝜑 | −→ 𝑣,

(𝐷𝑖𝜑) −→ 0,

when |x| → ∞.

3. Formulation of problem

Looking at the same problem from the differential geometrical viewpoint, since solutions are
time independent, we will need two bundles with the base space R2:

1. Principal bundle with the fiber 𝐺 = 𝑈 (1),
2. vector bundle associated with this principal bundle.
In our case, we have C as a fiber and 𝐺 group acts on it by the simple multiplication of two

complex numbers.
From now on, we will look at the complex field 𝜑(𝑥) = 𝜑1(𝑥) + 𝑖𝜑2(𝑥) as the section of

Hermitian line bundle over the R2. 𝐴𝑖 (x)− now are components of the connection on R2. In the
coordinates (𝑥1, 𝑥2) the connection will be

𝐴(x) = 𝐴1(x)𝑑𝑥1 + 𝐴2(x)𝑑𝑥2.

𝐹𝑖 𝑗 are components of the curvature associated with this connection. It is known that in general

𝐹 = 𝑑𝐴 + 𝐴 ∧ 𝐴 =
1
2

2∑︁
𝑖, 𝑗=1

𝐹𝑖 𝑗𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 , (3)

where 𝑑 : Ω𝑘 (R2) → Ω𝑘+1(R2) is exterior derivative of the smooth 𝑘−forms Ω𝑘 (R2) and ∧ is a
wedge product between the differential forms. In our case the second term in (3) vanishes and we
are left with

3
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𝐹 = 𝑑𝐴 ,

so
𝐹𝑖 𝑗 = 𝜕𝑖𝐴 𝑗 − 𝜕 𝑗𝐴𝑖 ,

as we had for the Field tensor. To summarize the objects we have in the language of differential
forms:

𝜑 − C-valued 0-form;
𝐴 − u(1)-algebra valued 1−form;
𝐹 − u(1)-algebra valued 2−form.

Using these and constructing so called "Yang-Mills-Higgs" action with 𝑈 (1) local symmetry,
we arrive to

A[𝐴𝑖 , 𝜑] =
1
2

∫
R2

[
𝐹𝐴 ∧ ∗𝐹𝐴 + (𝐷𝐴𝜑) ∧ ∗(𝐷𝐴𝜑) +

_

2
∗ (|𝜑 |2 − 1)2

]
, (4)

which is an analogue of the energy functional (2). Here ” ∗ ” is a Hodge star operator ∗ : Ω𝑘 (R2) →
Ω𝑑𝑖𝑚(R2)−𝑘 (R2) and

𝐷𝐴𝜑 = (∇𝐴)1𝜑 𝑑𝑥1 + (∇𝐴)2𝜑 𝑑𝑥2,

where (∇𝐴)𝑖𝜑 is a covariant derivative of 𝜑 and gives us again a section in the following way

(∇𝐴)𝑖𝜑 = ∇𝑖𝜑 + 𝜌(𝐴𝑖) 𝜑. (5)

Here ∇𝑖 ≡ 𝜕𝑖 and 𝜌(𝐴𝑖) is a representation of the Lie algebra corresponding to the considered
group. The representation space is chosen to be a fiber of the associated vector bundle. In our case
from (5) follows that (∇𝐴)𝑖𝜑 = (𝜕𝑖 − 𝑖𝐴)𝜑.

Let us now define the vortex number

𝑁 =
1

2𝜋

∫
R2

𝐹 , 𝑁 ∈ Z . (6)

For the field equations we will take a variance of (4) with respect to 𝜑 and 𝐴 and get:

𝑑 ∗ 𝐹𝐴 =
𝑖

2
∗ (𝜑𝐷𝐴𝜑 − 𝜑𝐷𝐴𝜑), 𝐷𝐴 ∗ 𝐷𝐴𝜑 =

_

2
∗ (|𝜑 |2 − 1)𝜑,

or in components

𝜕𝑖𝐹𝑖 𝑗 = − 𝑖

2
(𝜑(𝜕 𝑗 + 𝑖𝐴 𝑗)𝜑 − 𝜑(𝜕 𝑗 − 𝑖𝐴 𝑗)𝜑) = 𝐼𝑚(𝜑(∇𝐴) 𝑗𝜑) ≡ 𝐽 𝑗 , (7)

∇2
𝐴𝜑 =

_

2
𝜑( |𝜑|2 − 1). (8)

It is clear that they coincide with the field equations for the stationary case, when the Lagrangian
has (1) form.

Taking the special case _ = 1, we can rewrite (4) as

4
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A[𝐴𝑖 , 𝜑] =
∫
R2

𝑑2𝑥

{
1
2
[(𝜕1𝜑1 + 𝐴1𝜑2) ∓ (𝜕2𝜑2 − 𝐴2𝜑1)]2+

+ 1
2
[(𝜕2𝜑1 + 𝐴2𝜑2) ± (𝜕1𝜑2 − 𝐴1𝜑1)]2+

+1
2
[𝐹12 ±

1
2
(𝜑2

1 + 𝜑2
2 − 1)]2

}
± 1

2

∫
R2

𝑑2𝑥𝐹12 .

(9)

From (9) follows that A ≥ 𝜋 |𝑁 |, where 𝑁 is defined by (6). If 𝑁 > 0, minimum of the action
is achieved when

(𝜕1𝜑1 + 𝐴1𝜑2) − (𝜕2𝜑2 − 𝐴2𝜑1) = 0, (10)

(𝜕2𝜑1 + 𝐴2𝜑2) + (𝜕1𝜑2 − 𝐴1𝜑1) = 0, (11)

𝐹12 +
1
2
(𝜑2

1 + 𝜑2
2 − 1) = 0. (12)

Solutions of these equations also satisfy the equations (7), (8). For 𝑁 < 0, similar equations are
obtained.

4. Complex variables

Next step is to go to the complex variables via

𝑧 = 𝑥1 + 𝑖𝑥2 , 𝑧 = 𝑥1 − 𝑖𝑥2,
𝜕

𝜕𝑧
≡ 𝜕𝑧 =

1
2
(𝜕1 − 𝑖𝜕2),

𝜕

𝜕𝑧
≡ 𝜕𝑧 =

1
2
(𝜕1 + 𝑖𝜕2).

Decomposing 𝜑 into its real and imaginary parts and writing 𝐴 in the new coordinates (𝑧, 𝑧)

𝜑 = 𝜑1 + 𝑖𝜑2, 𝐴 = 𝛼𝑑𝑧 + 𝛼𝑑𝑧,

where 𝛼 =
1
2
(𝐴1 − 𝑖𝐴2), 𝛼 =

1
2
(𝐴1 + 𝑖𝐴2).

The equations (10), (11), (12) in complex variables will become

(𝜕𝑧 + 𝑖𝛼)𝜑 + (𝜕𝑧 − 𝑖𝛼)𝜑 = 0, (13)

(𝜕𝑧 + 𝑖𝛼)𝜑 − (𝜕𝑧 − 𝑖𝛼)𝜑 = 0, (14)

2𝑖(𝜕𝑧𝛼 − 𝜕𝑧𝛼) = 4𝐼𝑚(𝜕𝑧𝛼) =
1
2
(1 − 𝜑𝜑). (15)

It is clear that (13) and (14) are real and imaginary parts of the expression

𝐷𝐴𝜑 − 𝑖 ∗ 𝐷𝐴𝜑 = 2(𝜕𝑧 − 𝑖𝛼)𝜑𝑑𝑧 = 0 ,

from which follows that
(𝜕𝑧 − 𝑖𝛼)𝜑 = 0. (16)

This is the main equation that we are going to study in this paper.
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Note that

𝐷𝐴𝜑 = (𝜕 − 𝑖𝐴1)𝜑𝑑𝑥1 + (𝜕 − 𝑖𝐴2)𝜑𝑑𝑥2

=
1
2
[(𝜕𝑧 + 𝜕𝑧) − 𝑖(𝛼 + 𝛼)]𝜑(𝑑𝑧 + 𝑑𝑧) + 1

2𝑖
[𝑖(𝜕𝑧 − 𝜕𝑧) + 𝑖(𝛼 − 𝛼)]𝜑(𝑑𝑧 − 𝑑𝑧)

= (𝜕𝑧 − 𝑖𝛼)𝜑𝑑𝑧 + (𝜕𝑧 − 𝑖𝛼)𝜑𝑑𝑧.

Using that ∗𝑑𝑥1 = 𝑑𝑥2 ; ∗𝑑𝑥2 = −𝑑𝑥1 → ∗𝑑𝑧 = −𝑖𝑑𝑧 𝑎𝑛𝑑 ∗ 𝑑𝑧 = 𝑖𝑑𝑧, we obtain the variational
equations in complex variables

𝐷𝐴 ∗ 𝐷𝐴𝜑 = [(𝜕𝑧 − 𝑖𝛼)𝜑𝑑𝑧 + (𝜕𝑧 − 𝑖𝛼)𝜑𝑑𝑧] [(−𝜕𝑧 − 𝑖𝛼)𝜑𝑑𝑧 + (𝜕𝑧 + 𝑖𝛼)𝜑𝑑𝑧]
= (2𝑖(𝜕𝑧𝜕𝑧 − 𝛼𝛼)𝜑 + 𝜕𝑧 (𝛼𝜑) + 𝜕𝑧 (𝛼𝜑) + 𝛼𝜕𝑧𝜑 + 𝛼𝜕𝑧𝜑) 𝑑𝑧 ∧ 𝑑𝑧,

_

2
∗ (|𝜑 |2 − 1)𝜑 =

(
_

2
( |𝜑 |2 − 1)𝜑

)
𝑑𝑥1 ∧ 𝑑𝑥2 =

(
_

2
( |𝜑 |2 − 1)𝜑

)
𝑖

2
𝑑𝑧 ∧ 𝑑𝑧,

so 𝐷𝐴 ∗ 𝐷𝐴𝜑 =
_

2
∗ (|𝜑|2 − 1)𝜑 and 𝑑 ∗ 𝐹𝐴 =

𝑖

2
∗ (𝜑𝐷𝐴𝜑 − 𝜑𝐷𝐴𝜑) in components will be:

4(𝜕𝑧𝜕𝑧 − 𝛼𝛼)𝜑 − 2𝑖(𝜕𝑧𝛼 + 𝜕𝑧𝛼 + 𝛼𝜕𝑧 + 𝛼𝜕𝑧)𝜑 =
_

2
( |𝜑|2 − 1)𝜑

and
(𝜕𝑧 − 𝜕𝑧)𝐼𝑚(𝜕𝑧𝛼) =

1
4𝑖
𝐼𝑚(𝜑(𝜕𝑧 + 𝜕𝑧)𝜑) −

1
8
(𝛼 + 𝛼) |𝜑 |2,

(𝜕𝑧 + 𝜕𝑧)𝐼𝑚(𝜕𝑧𝛼) =
1
4𝑖
𝐼𝑚(𝜑(𝜕𝑧 − 𝜕𝑧)𝜑) −

1
8
(𝛼 − 𝛼) |𝜑|2,

respectively.
In the next section we will analyze the following theorem from [4] in spirit of the paper [1]

using the theory of the pseudoanalytic functions [3], [5].

Theorem 1. Given an integer 𝑁 ≥ 0 and a set {𝑧𝑖}, 𝑖 = 1, ..., 𝑁 , of 𝑁 points inC, there exists a finite
action solution to equations (10), (11), (12), unique up to gauge equivalence, with the following
properties:

1. The solution is globally smooth.

2. The zeros of 𝜑 are the set of point {𝑧𝑖}, and

𝜑(𝑧, 𝑧) ∼ 𝑐𝑖 (𝑧 − 𝑧𝑖)𝑛𝑖 , 𝑐𝑖 ≠ 0,

as 𝑧 → 𝑧𝑖 . 𝑛𝑖 is multiplicity of 𝑧𝑖 in the set {𝑧𝑖}.

3.

𝑁 =
1

2𝜋

∫
R2

𝐹𝐴 =
∑︁

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑧𝑖

𝑛𝑖 =
1
𝜋
A . (17)

6
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5. On pseudoanalytic functions

Pseudoanalytic functions are a class of complex-valued functions that obey the generalized
Cauchy-Riemann equations [3], [5]. In this section we give some concepts and basic facts from the
theory of the pseudoanalytic functions.

Let Ω be a simply connected domain inR2. A pair of complex functions 𝐹 and 𝐺 in the domain
Ω, which have Hölder continuous partial derivatives with respect to the real variables, is called a
generating pair, if

𝐼𝑚(𝐹𝐺) > 0 𝑖𝑛 Ω

inequality holds.
Let 𝜔 : Ω → C be a complex valued function in the domain Ω ⊂ C. It is clear that there exist

real-valued functions 𝜙(𝑧) and 𝜓(𝑧) such that

𝜔(𝑧) = 𝜙(𝑧)𝐹 (𝑧) + 𝜓(𝑧)𝐺 (𝑧).

We say that 𝜔 has (𝐹, 𝐺)-derivative, denoted by ¤𝜔(𝑧0), at 𝑧0 ∈ Ω if the limit

¤𝜔(𝑧0) = lim
𝑧→𝑧0

𝜔(𝑧) − 𝜙(𝑧0)𝐹 (𝑧) − 𝜓(𝑧0)𝐺 (𝑧)
𝑧 − 𝑧0

exists and it is finite.
We will call 𝜔 (𝐹, 𝐺)-pseudoanalytic in the domain Ω if ¤𝜔 exists everywhere in Ω. Denote

by 𝐴Ω(𝐹, 𝐺) the space of (𝐹, 𝐺)-pseudoanalytic functions. This space contains the space 𝐻 (Ω)
of analytic functions and main properties of analytic functions extend on 𝐴Ω(𝐹, 𝐺). Namely, the
following important theorem holds.

Theorem 2. A function 𝜔 is (𝐹, 𝐺)-pseudoanalytic in domain Ω if and only if 𝜔 satisfies the
following generalized nonhomogenous Cauchy-Riemann equation (so called Carleman-Bers-Vekua
equation, see [2])

𝜔𝑧 = 𝑎𝜔 + 𝑏𝜔, (18)

where

𝑎 = −𝐹𝐺 �̄� − 𝐹�̄�𝐺

𝐹𝐺 − 𝐹𝐺
, 𝑏 =

𝐹𝐺 �̄� − 𝐹�̄�𝐺

𝐹𝐺 − 𝐹𝐺

are defined on the domain Ω and satisfy the regularity conditions (see [2]) 𝑎, 𝑏 ∈ 𝐿𝑝,2(C).
𝜔𝑧 ≡ 𝜕𝑧𝜔 is generalized derivative in the Sobolev sense with respect to 𝑧.

The solutions of the equations are elements of the space 𝐴Ω(𝐹, 𝐺) and the following, so called
similarity principle, is valid:

𝜔 = Φ𝑒𝑠, (19)

where Φ(𝑧) is analytic and

𝑠 =


𝑇C

[
𝑎 + 𝑏

𝜔

𝜔

]
, 𝑖 𝑓 𝜔(𝑧) ≠ 0 𝑧 ∈ Ω,

𝑇C [𝑎 + 𝑏], 𝑖 𝑓 𝜔(𝑧) = 0 𝑧 ∈ Ω.

7
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The integral

𝑞(𝑧) = 𝑇C [𝑔(𝑧)] = − 1
𝜋

∫
C

𝑔(_)
_ − 𝑧

𝑑b𝑑[, _ = b + 𝑖[

for 𝑔(𝑧) ∈ 𝐿𝑝,2(C), 𝑝 > 2 is well defined, 𝑞(𝑧) ∈ 𝐷𝑧C and
𝜕𝑇𝐸 [𝑔(𝑧)]

𝜕𝑧
= 𝑔(𝑧). Here 𝐷𝑧C is a

linear space of functions that have generalized derivative in the Sobolev sense with respect to 𝑧.
From the representation (19) follows the following important property of pseudoanalytic func-

tions.

Corollary 1. (Carleman’s theorem) A pseudoanalytic function, which does not vanish identically,
has only isolated zeros.

Returning to the equation 𝜑𝑧 = 𝑖𝛼𝜑 and comparing it to (18), we conclude that 𝑏 = 0 and
𝑎 = 𝑖𝛼. We will look at 𝜑 as the pseudoanalytic function and use the representation (19) to get

𝜑(𝑧) = Φ𝑒𝑇 [𝑎] = Φ(𝑧)𝑒𝑥𝑝
{
− 1
𝜋

∫
C

𝑎(_)
_ − 𝑧

𝑑b𝑑[

}
= Φ(𝑧)𝑒𝑥𝑝

{
− 𝑖

𝜋

∫
C

𝛼(_)
_ − 𝑧

𝑑b𝑑[

}
= Φ(𝑧)𝑒𝑥𝑝

{
− 𝑖

2𝜋

∫
C

(𝐴1 + 𝑖𝐴2) (_)
_ − 𝑧

𝑑b𝑑[

}
= Φ(𝑧)𝑒𝑥𝑝

{
1

4𝜋

∫
C

(𝐴1 + 𝑖𝐴2) (_)
_ − 𝑧

𝑑_𝑑_

}
.

(20)

The same result is obtained by using the 𝜕−Poincaré lemma [4].
For it to be a solution of our problem, it needs to satisfy the following condition:

|𝜑(𝑧) | = |Φ(𝑧)𝑒𝑥𝑝
{

1
4𝜋

∫
C

(𝐴1 + 𝑖𝐴2) (_)
_ − 𝑧

𝑑_𝑑_

}
| → 1 𝑎𝑠 |𝑧 | → ∞.

Now using the Corollary 2.1, we arrive to the statement: if 𝜑 has zeros, they are isolated.
For asymptotic behavior near zeros of 𝜑(𝑧), we use the same arguments as in [4]. Namely,

suppose 𝜑(𝑧𝑘) = 0, 𝑧𝑘 ∈ Ω. according to our representation of 𝜑, Φ(𝑧𝑘) = 0 and since Φ(𝑧) is
analytic, in the neighborhood of 𝑧𝑘 we have

Φ(𝑧) = 𝑔(𝑧) (𝑧 − 𝑧𝑘)𝑛𝑘 ,

where 𝑛𝑘 is multiplicity of 𝑧𝑘 , 𝑔(𝑧) is analytic function and 𝑔(𝑧𝑘) ≠ 0. Furthermore, for 𝜑 in the
neighborhood of 𝑧𝑘 we can write:

𝜑 = 𝑔(𝑧) (𝑧 − 𝑧𝑘)𝑛𝑘 𝑒𝑠 = ℎ(𝑧) (𝑧 − 𝑧𝑘)𝑛𝑘 ,

where ℎ(𝑧) = 𝑔(𝑧)𝑒𝑠 and ℎ(𝑧𝑘) ≠ 0. We can rewrite the previous expression as

𝜑(𝑧) = |ℎ(𝑧) |𝑒𝑖𝑎𝑟𝑔 (ℎ (𝑧)) |𝑧 − 𝑧𝑘 |𝑛𝑘 𝑒𝑖𝑛𝑘𝑎𝑟𝑔 (𝑧−𝑧𝑘 ) ≡ 𝑒𝑢+𝑖 \ . (21)

From it we see that all zeros of 𝜑(𝑧) are at the same time singular points for the "phase", i.e.
\ (𝑧) = 𝑎𝑟𝑔(ℎ(𝑧)) + 𝑛𝑘𝑎𝑟𝑔(𝑧− 𝑧𝑘) and the singularity comes from the second term, since ℎ(𝑧) does
not vanish at 𝑧𝑘 .

8
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6. Winding and vortex numbers

Let us construct a map 𝑓 : 𝑆1 → 𝑆′1, where 𝑆1 is the unit circle in R2 � C, and 𝑆′1 is a set of
values of 𝜑(𝑧), when |𝑧 | → ∞. For this consider the function

𝑓 (𝑧) = 𝑒𝑖𝛽 (𝑧)

and its restriction

𝛽(𝑧) = 𝛽( |𝑧 |, 𝑎𝑟𝑔(𝑧) + 2𝜋) = 𝛽( |𝑧 |, 𝑎𝑟𝑔(𝑧)) + 2𝜋𝑑𝑒𝑔( 𝑓 ).

The degree of this map, as well as the winding number is

𝑑𝑒𝑔( 𝑓 ) = 𝑊𝑖𝑛𝑑𝑖𝑛𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 =
1

2𝜋𝑖

∮
𝑆1

𝜕 𝑓

𝑓
𝑑𝑧. (22)

Construct 𝑓 from 𝜑 in the following way

𝑓 = lim
|𝑧 |→∞

𝜑(𝑧),

so 𝑆′1 is a circle with radius 1 in the space of the values of 𝜑. Using (21), we can represent 𝑓 of the
form

𝑓 = 𝑒𝑥𝑝

{
2𝑖
∑︁
𝑘

𝑎𝑟𝑔(𝑧 − 𝑧𝑘)
}
. (23)

Putting this into (22) we obtain

𝑑𝑒𝑔( 𝑓 ) = 1
2𝜋𝑖

∮
𝑆1

𝜕 𝑓

𝑓
𝑑𝑧 =

1
2𝜋𝑖

∮
𝑆1

1
𝑧 − 𝑧𝑘

𝑑𝑧 =
∑︁

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑧𝑖

𝑛𝑖 ,

so
𝑑𝑒𝑔( 𝑓 ) = 𝑊𝑖𝑛𝑑𝑖𝑛𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 =

∑︁
𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑧𝑖

𝑛𝑖 .

Now, using the asymptotic behavior, we can compute components of the connection in the
coordinates (𝑧, 𝑧). In particular, when |𝑧 | → ∞, |𝜑 | → 1 and 𝐷𝐴𝜑 = (𝑑𝜑 − 𝑖𝐴𝜑) → 0, that means
𝑑𝜑 → 𝑖𝐴𝜑. On and beyond a sufficiently large circle |𝜑 | = 1, 𝑑𝜑 = 𝑖𝐴𝜑. Writing the latter one in
components

𝜕𝑧𝜑𝑑𝑧 + 𝜕𝑧𝜑𝑑𝑧 = 𝑖𝛼𝜑𝑑𝑧 + 𝑖𝛼𝜑𝑑𝑧.

From this we obtain two equations {
(𝜕𝑧 − 𝑖𝛼)𝜑 = 0,
(𝜕𝑧 − 𝑖𝛼)𝜑 = 0.

(24)

The first one is the same as the equation (16) that we were studying. With the use of (23) for the 𝜑,
when |𝑧 | → ∞, let us solve the second equation

9
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(𝜕𝑧 − 𝑖𝛼)𝑒𝑥𝑝
{

2𝑖
∑︁
𝑘

𝑎𝑟𝑔(𝑧 − 𝑧𝑘)
}
= 0

of the system (24) with respect 𝛼:

𝛼(𝑧) = 𝜕𝑧2
∑︁
𝑘

𝑎𝑟𝑔(𝑧 − 𝑧𝑘) = −𝑖
∑︁
𝑘

𝑧 − 𝑧𝑘

|𝑧 − 𝑧𝑘 |2
= −𝑖

∑︁
𝑘

1
𝑧 − 𝑧𝑘

, (25)

here 𝑧 ∈ 𝑆1 with sufficiently large radius. For any 𝑧 ∈ C we have the representation of 𝛼

𝛼(𝑧) = −𝑖𝜒(𝑧, 𝑧)
∑︁
𝑘

1
𝑧 − 𝑧𝑘

,

where 𝜒(𝑧, 𝑧) is an arbitrary function with the property lim
|𝑧 |→∞

𝜒(𝑧, 𝑧) = 1 and now compute the

vortex number:

𝑁 =
1

2𝜋

∫
R2

𝐹𝐴 =
1

2𝜋

∮
𝑆1 ( |𝑧 |→∞)

𝐴 =
1

2𝜋
©«−𝑖

∮
𝑆1

∑︁
𝑘

1
𝑧 − 𝑧𝑘

𝑑𝑧 + 𝑖

∮
𝑆1

∑︁
𝑘

1
𝑧 − 𝑧𝑘

𝑑𝑧
ª®®¬ =

=
∑︁

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑧𝑖

𝑛𝑖 .

Therefore, we have obtained another proof of the Theorem 1.

7. Conclusion

The opportunity to use the theorems known in pseudoanalytic functions theory was provided
to us by the form of the equation (16). As we have shown, looking at 𝜑 as the pseudoanalytic
function of the first kind was useful since from this one can get important information regarding
the solutions of our problem. For the future, we would like to mention that equation (12), which in
terms of the function 𝑢, defined in (21), has the form of the Liouville equation, can also be related
to one of the equations known in pseudoanalityc functions theory, called the Beltrami equation. It
will be interesting for the future to also analyze it with this viewpoint in mind and possibly make
novel conclusions.
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