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1. Overview

With the the discovery of a diffuse flux of astrophysical neutrinos [1, 2] and the identification
of the first candidate extra-galactic source of neutrinos [3, 4], neutrinos have been established a
powerfulmessenger in the exploration of the high-energy universe. TheRadioNeutrinoObservatory
in Greenland (RNO-G) will extend the reach of multi-messenger neutrino experiments to energies
above 100 PeV (ultra-high energies UHE, see Fig. 1), with a unique view of the Northern sky 3, and
the largest footprint of a radio neutrino experiment (see Fig. 4), while also providing several critical
technological tests that will inform the design of the radio component of IceCube-Gen2 [5, 6].

Neutrinos are excellent probes of high energy particle acceleration in the universe. Because
they only interact through the weak force, neutrinos point back to their sources, can reach Earth from
themost distant corners of the universe, and provide a clear indication of hadronic, cosmic ray accel-
eration. Above 100 PeV, astrophysical neutrinos can be generated through cosmic ray interactions
with gas or radiation at (or near) some of the most energetic objects in the universe [7–13]. Cosmo-
genic neutrinos [14] expected due to interactions of cosmic rays with photon backgrounds [15, 16] –
and from observations of the cosmic ray spectrum [17, 18] – are also expected at UHE [19–21]. The
neutrino flux encodes information about the evolution and acceleration mechanisms at cosmological
length scales.

The first observation of a neutrino from a blazar, TXS 0506+056, coincident with a flare in W-
rays opened a new window into the non-thermal universe through multi-messenger observations [3,
4]. However, the neutrino sky must be more complex; neutrinos from blazars cannot comprise the
bulk of the diffuse neutrino spectrum [22] and many sources may extend to higher energies [7–13].
Bursts of neutrinos from the most explosive sources are expected to peak in flux at the EeV scale.
A full understanding of the neutrino sky over cosmological distances requires a large detector and
observations expanded up to EeV energies.

RNO-G is an intermediate-scale discovery instrument for astrophysical and cosmogenic neutri-
nos at the highest energies that builds on prior ice radio experiments [23–28]. The design combines
high single-station effective volume achieved with the deep array with a cosmic ray veto and en-
hanced the neutrino effective volume from a shallow array. Its scalable, low power, and autonomous
design is a novel instrument design that provides important field testing for the larger radio array
planned for IceCube-Gen2 [6]. In this proceeding, we describe the science prospects of RNO-G,
the design, and the first deployment season.

2. Science Prospects with a Large Radio Array in Greenland

RNO-G’s sensitivity to the diffuse flux of neutrinos in the UHE range is shown in the left panel
of Fig. 1 as the 90% confidence level upper limit to the all-flavor diffuse flux of neutrinos. This
is compared to several models of the expected cosmogenic flux of neutrinos, assuming a range of
cosmic ray compositions that are still consistent with current observations from TA [32, 33] and
Auger [19, 34]. These are representative samples of a large range of models [36, 37]. Within 5
years of observation, RNO-G is expected to constrain the diffuse flux.

Additionally, several models of astrophysical neutrinos are expected to contribute to the diffuse
neutrino background in the UHE band. These models tend to extend to lower energies than the
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Figure 1: The five-year expected sensitivity of RNO-G to an all-flavor diffuse flux of neutrinos, assuming
all five stations are active 66% of the time, compared with existing experiments [2, 29–31] and several
representative cosmogenic fluxes [19, 32–34]. From Ref. [35].

cosmogenic models, but remain within the reach of RNO-G. Potential candidates range from Active
Galactic Nuclei (AGN) [7] to various types of gamma-ray bursts (GRBs) [8, 9], pulsars [10], galaxy
clusters [11], Flat Spectrum Radio Quasars (FSRQs) [12], and blazars [13].

RNO-Gwill also be capable of searching for transient phenomena that generate UHE neutrinos,
extending multi-messenger observations of these explosive objects into a new energy range. RNO-
G’s neutrino fluence sensitivity in a range of zenith angle bands is shown in the right panel of
Fig. 2. Flares of blazars [12, 38] may generate UHE neutrinos along with neutrinos at lower
energies observable with IceCube. Gamma-ray bursts (GRBs) can produce UHE neutrinos at
several stages in their evolution, including during the prompt phase of short GRBs [39] and in
the afterglow phase [9]. Cataclysmic events like tidally disrupted stars [40] and neutron star
mergers [41, 42], some of which can result in long-lived magnetars [43], can produce gravitational
waves and neutrinos simultaneously. A planned design feature of RNO-G is the capability to send
and respond to real-time alerts, made possible by a local LTE network and continuous satellite
network connection between Summit Station and RNO-G institutions.

RNO-G will provide a unique view of the UHE Northern sky that is broad in declination and
overlaps with the region of the sky where IceCube is most sensitive to lower-energy neutrinos, as
shown in Fig. 3. The Earth is opaque to neutrinos at PeV to EeV energies, such that UHE neutrino
observatories are most sensitive to Earth-skimming neutrinos. Therefore, follow-up of TeV-scale
IceCube events at higher energies requires a Northern detector. In addition to the targets defined by
IceCube, other sources visible with RNO-G include several well-known TeV gamma ray blazars 1

1http://tevcat.uchicago.edu
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Figure 2: The neutrino fluence sensitivity (95% CL, full decade in energy) of RNO-G shown in several
zenith angle bands. Several models for transient sources including blazars [38], stable magnetars [43], short
GRBs [39], GRB afterglows [9] are shown for comparison at several luminosity distances. From Ref. [35].

and the TA hospot [44]. The broad sky coverage will enables studies of studies of point sources of
high-energy neutrinos in the UHE band that can be combined with neutrino observations at lower
energies.

RNO-G will also provide a testbed for fundamental physics at energies in a new energy range
(see Ref. [45, 46] and references therein). Nucleon and nuclear structure and potential new physics
can be probed through cross-section measurements of the interactions of neutrinos with nucleons.
Some models, such as those that include sphaelerons, supersymmetry, rolled-up dimensions, or
leptoquarks, can lead to drastic increases in the cross-section at UHE energies. They can also
be used to measure probe parton distributions at low Bjorken G and high &2, well beyond the
reach of the Large Hadron Collider. Fundamental properties of the neutrino can be explored at
a new energy scale and over long length scales including flavor oscillations and neutrino decay.
Several opportunities are available for exploring new physics including dark matter, neutrino self-
interactions, fundamental symmetries, and interactions of neutrinos with dark backgrounds, among
others. All fundamental physics measurements require the discovery of UHE neutrinos and good
energy and angular resolution.

3. The Radio Technique in Greenland

The radio detection technique relies on coherent, impulsive radio signals emitted when a
neutrino interacts in a dense material [48], due to a negative charge excess in the resulting cascade.
For wavelengths larger than the transverse size of the shower, the emission is coherent, leading to
a large power boost for high-energy showers at frequencies . 1 GHz. This so-called Askaryan
effect [49] has been demonstrated in beam-test experiments [50–53]. The radio technique has
advanced over the last two decades through several experiments [27, 54], especially recently through
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Figure 3: Sky coverage of RNO-G compared with several potential sources indicating the unique view of the
Northern sky accessible to RNO-G, shown as both the instantaneous sky coverage and the diurnally averaged
sky coverage. Shown in blue are the most significant sources in a point-source search in IceCube [47]. The
orange sources include strong gamma ray or radio emitters as well as the TA hotspot [44]. From Ref. [35].

the balloon-borne experiment ANITA [27], the ARIANNA shallow array [55] and ARA, a deep-ice
detector at the South Pole [23, 56]. These and other radio instruments have further validated the
radio technique through cosmic ray observations [57–59] and radio propagation studies [60, 61].

RNO-G is located at Summit Station, a site managed by the US National Science Foundation
(NSF). Summit Station (72◦35′46′′ N, 38◦25′19′′ W) is located in near the apex of the ice sheet
in Greenland over 3.2 km of ice. Early field campaigns established that the site is suitable for a
large scale neutrino detector. In 2013, the depth averaged attenuation length was first measured at
Summit Station [62] to be 823+189

−209 m when extrapolated from 75 MHz to 300 MHz. In 2015, the
field teams deployed an analog prototype of the trigger design used in RNO-G. They also monitored
both the radio frequency noise environment [62] and radio wave propagation in the upper layer of
snow known as the firn [63]. Further ice studies relevant for radio neutrino detection are underway
at Summit Station now.

4. Instrument Design

As shown in Fig. 4, RNO-G will be a large scale observatory consisting of 35 independently-
triggered stations separated by 1.25 km. The array will cover a 50 km2 area over the surface of
glacial ice. While the first stations were already deployed in the summer of 2021, the array is
planned to be completed and fully operational by 2024.

The RNO-G design combines a deep array for high-sensitivity triggering and a surface array
for a cosmic-ray veto and improved event reconstruction. Most of the deep antennas, both vertically
polarized (Vpol) and horizontally polarized (Hpol) antennas, are deployed on a single string of
instrumentation in one hole. The other two instrumented strings provide azimuthal reconstruction
and also have impulsive calibration sources for in situ characterization. The hardware for RNO-G
is described in detail in these proceedings [64].
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Figure 4: Planned RNO-G array at Summit Station, including the first 3 stations deployed in 2021. The first
station deployed, Amaroq, is shown on the left.

The RNO-G stations, shown in Fig. 5, each have 15 deep channels and 9 shallow channels. The
power string, shown on the left, has a compact, closely packed array of antennas used in the primary
trigger as well as antennas deployed at different depths along the same string. The helper strings
provide additional antennas for reconstruction and calibration pulsers. The vertically polarized
antennas consist of 5-inch diameter fat dipoles based on the RICE and GNO dipole designs. The
horizontally polarized antennas use an 8-inch diameter aluminum quad-slot design. Commercially
available LPDAs are used for the for the shallow channels. Three of the LPDAs point upward, while
the remaining six point downward.

Because the density and index of refraction of ice increases with depth, radio signals from
neutrino interactions deep in the ice bend as they travel towards the surface. Antennas positioned
deeper in the ice therefore access a larger volume of ice and fractional field of view than those at
the surface, which motivates using the deep channels as the primary trigger.

RNO-G stations are primarily triggered with an interferometric phased array on the deep
vertically polarized channels, based on a similar trigger used in the ARA experiment [65] and
tested in early field campaigns in Greenland [62]. The phased array trigger coherently sums the
envelopes of the waveforms with time delays corresponding to a range of angles of incident plane
waves, increasing the voltage signal-to-noise ratio (SNR) for triggering by the square root of the
number of antennas in the array [65]. Based on a full Askaryan trigger simulation, validated by the
performance of the existing ARA system, we expect to achieve an elevation-averaged 50% trigger
efficiency point at a 2f threshold in voltage. The trigger for RNO-G is tuned to the lower portion of
the frequency band (80-236MHz), which optimizes for events further from the Cherenkov cone and
achieves a comparable trigger efficiency as the ARA phased array even with fewer channels [35, 66].
Each station uses a custom designed digitizer board using LAB4d digitizers [67], which yield more
than a GHz of bandwidth, using two buffers of 2048 samples each.

Cosmic ray air showers provide a unique opportunity for instrument calibration and validation.
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Figure 5: Isometric view of an RNO-G station. The as-deployed design shown here incorporates shallow
and deep antennas to search for ultra-high energy neutrinos.

Air showers from downgoing cosmic rays generate coherent radio emission from the combined
effects of geomagnetic emission and Askaryan radiation, with geomagnetic emission dominating.
Geomagnetic emission occurs due to the currents induced by the Lorentz force acting on charged
particles in the shower. The expected radio footprint for a range of zenith angles is shown in
Fig. 6. Cosmic ray and neutrino radio signals can be distinguished by their polarization, signal
shape [57, 68, 69], but because both signals are broadband and impulsive, the more prevalent
cosmic ray events can be used to calibrate the instrument timing and energy scale [58, 59]. Using
an independent trigger with only the shallow channels, we expect O(10 − 100) cosmic ray events
per day. Because the radio signal refracts into a narrow range of angles near the nulls of the deep
antennas, we expect the cosmic ray rate using the primary trigger formed with the deep channels
to be substantially lower. However, the instrument sensitivity can be calibrated with the surface
channels.

The same characteristics that make cosmic rays a good calibration source also make them
potential backgrounds. Thus the shallow channels provide an additional veto for cosmic ray events.
This is especially important for more insidious cosmic-ray induced backgrounds like cosmic-ray
muons that generate showers in the ice similar to neutrinos [70] and transition radiation from air
showers impacting the ice [71]. The shallow channels can also veto non-thermal backgrounds
originating from above the surface. These potential cosmic ray backgrounds can be O(0.1-1) events
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Figure 6: (Left) The radio footprint of 3.2×1018 eV cosmic ray air showers over the full RNO-G array,
simulated with CORSIKA. (Right) The number of detected atmospheric muons per year as a function of
shower energy in a simulated array as a function of cosmic ray energy. From Ref. [35, 70].

Figure 7: The Big RAID Auger drill designed by the British Antarctic Survey to drill 11-inch diameter
holes.

per array per year, which may be comparable to rate of neutrinos.
The stations are autonomous, using solar power to provide an expected 60-70% uptime and

an LTE cellular network for the high-throughput communications required to transmit the full
waveforms back to the Big House. A backup lower throughput LoRaWAN that can be used for
station commanding and monitoring is also available. Summit Station has a continuous, 24-hour
satellite connection that allows for 1 Gb/day of data to be transmitted to the RNO-G collaborating
institutions. The continuous networking capabilites can be used to respond to and generate multi-
messenger alerts.

5. The First Deployment Season

The first three stations, Amaroq (shown in the left panel of Fig. 4), Nanoq, and Avinngaq, were
deployed at Summit Station during this conference, in the summer of 2021. These stations are the
closest to the main Summit Station. They are also the closest planned stations to a deep hole, the
DISC (Deep Ice-Sheet Coring) borehole [72], an full-depth borehole available for use in calibrating

8



P
o
S
(
I
C
R
C
2
0
2
1
)
0
0
1

RNO-G Stephanie Wissel
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Initial design Design iteration and improvement
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Data taking

Deployment Deployment Deployment

Figure 8: Deployment schedule for RNO-G.

the stations over long distances. The remaining stations are expected to be deployed in by 2024.
The deployment schedule shown in Fig. 8 includes delays due to the COVID-19 pandemic.

Three 100-m holes are drilled per station using the custom designed 11-inch drill (the British
Antarctic Survey’s BigRAID drill [73]), shown in Fig. 7. Over the 2021 deployment season most
holes were drilled in two shifts of two people per hole, but we anticipate improvements to the
drilling procedure that can complete a 100-m hole in one shift. Aspects of the hardware and station
deployment procedure are illustrated in Fig. 9.

Fig. 10 shows some of the first events recorded on the vertically polarized channels in Amaroq.
These events were generated by a field team member driving a snowmobile near the station. The
events demonstrate the impulsive character of the signals searched for by RNO-G.

6. Conclusions

RNO-G is a mid-scale UHE neutrino detector currently under construction and operating at
Summit Station in Greenland. It is the first science-level instrument to target the UHE cosmic
neutrino sky in the North. The novel hybrid design combines deep component for high effective
volume from deep, low threshold trigger with shallow component for improved angular recon-
struction, additional neutrino sensitivity, and background vetos. The instrument is designed to be
scalable, both allowing a large number of stations to be installed in over four years and using a low
power design.

We are thankful to the staff at Summit Station for supporting our deployment work in every way
possible. Also to our colleagues from the British Antarctic Service for getting excited about building
and operating theBigRAIDdrill for our project. Wewould like to acknowledge our home institutions
and funding agencies for supporting the RNO-G work; in particular the Belgian Funds for Scientific
Research (FRS-FNRS and FWO) and the FWOprogramme for International Research Infrastructure
(IRI), the National Science Foundation through the NSF Awards 2118315 and 2112352 and the
IceCube EPSCoR Initiative (Award ID 2019597), the German research foundation (DFG, Grant
NE 2031/2-1), the Helmholtz Association (Initiative and Networking Fund, W2/W3 Program), the
University of Chicago Research Computing Center, and the European Research Council under the
European Unions Horizon 2020 research and innovation programme (grant agreement No 805486).
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Figure 9: Deployment of the RNO-G stations proceeds after the three holes are drilled. The snow-mobile
driven deployment hut (top left) is secured over the holes, so that the deep component of the station can be
installed at their final depth (right). Shallow antennas (trench shown in bottom middle), cables, solar panels,
and the vault (bottom left) containing the data acquisition system, batteries and interfaces to the antennas are
installed directly at the surface above the array.

Figure 10: Impulsive events from snowmobiles recorded on the vertically polarized channels of the deep
component in the first station, Amaroq.
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