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With the data collected in 2020, LHAASO found a dozen UHE gamma-ray sources with
high significance (> 7σ). Their energy spectra are found extended to about 1 PeV without
obvious cut-off. LHAASO also recorded the unprecedent highest energy photon with the
energy of 1.4 ± 0.13 PeV. These findings confirmed the existence of PeV particle acceler-
ators in the Milk Way and opened up an era of UHE gamma-ray astronomy. LHAASO
measured the energy spectrum of the Crab Nebula from 0.5 TeV up to 1.1 PeV for the
first time. LHAASO achieved the absolute energy scale calibration in cosmic ray shower
measurements at 21±6 TeV by measuring the Moon shadow drifting in the geo-magnetic
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and highlight the γ-ray results and cosmic ray progresses.
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1. Introduction

The origin of PeV Cosmic Rays (CRs) in the Galaxy is a long-standing puzzle. It
is widely believed that there are sources in our galaxy can at least accelerate particles
to PeV(PeVatrons). Identification of these accelerators is a prime objective towards the
understanding of the origin of galactic CRs. Gamma rays and neutrinos, produced in
the interaction of CRs with the ambient medium within or around the accelerator, are
key signatures of these CR factories. The typical energy of gamma rays produced in the
interaction of CRs with ambient medium is about 10% of the parent CR energy. A decisive
indication of acceleration of PeV protons is the observations of ultra-high energy (UHE;
E≥0.1 PeV) gamma-rays. Thus the detection of gamma rays above tens of TeV is crucial
for tracing the accelerators.

On the other hand, accurate measurements of CR energy spectra, compositions and
anisotropy for different compositions are also important tools to investigate the origin,
the acceleration and the propagation of CRs [1]. For example, the ‘knee’ structure of
CR spectrum might hint the highest energy that the Galactic CR sources can reach in
accelerating particles, and the energy of the knees for different elemental compositions might
reveal whether the acceleration mechanism is related to rigidity or not. Above several EeV,
CRs are produced from extragalactic sources as indicates by the CR anisotropy detected
by experiments, such as AUGER[2].

The Large High Altitude Air Shower Observation(LHAASO) experiment is a dual-
task facility designed for CR and γ-ray studies at TeV and PeV energies. LHAASO can
continuously monitor a large portion of the sky corresponding to almost 2/3 of the celestial
sphere for observations with a maximum zenith angle of 50◦. With the hybrid observation
and excellent γ/background discrimination ability, LHAASO can survey γ-ray sources over
almost 4 decades of energy with a sensitivity ' 1.3% in Crab unit per year above 50TeV.
Observational results with partially deployed LHAASO array since 2019 are presented in
this proceeding.

2. LHAASO Experiment

The LHAASO experiment [3] is located at Mountain Haizi, altitude of 4410m a.s.l.
and 29◦21’27.6" N, 100◦08’19.6" E, Daocheng, Sichuan Province, China. LHAASO consists
of three main detector arrays, i.e. Kilometer-square Array (KM2A), Water Cherenkov
Detector Array (WCDA), Wide Field of View Cherenkov Telescope Array (WFCTA).

The Water Cherenkov Detector Array (WCDA) is designed mainly for monitoring the
northern sky for transient phenomena and surveying for new sources. WCDA is composed
of 3 sub-arrays, i.e. WCDA-1 and WCDA-2 with an area of 150m × 150m each, and
WCDA-3 of 300m × 110m. WCDA has been built in 3 phases. WCDA-1 is completed in
2019 and consisting of 900 detector units, which are divide into 25 clusters. Each cluster
has a junction box containing readout electronics and calibration facilities of 4 groups of 9
detector units. Each detector unit is 5m × 5m that includes one 1.5 inch PMT and one 8
inch PMT to measure the charge and timing of water Cherenkov signals. It was in operation
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since April 2019. In the second phase, WCDA-2 with the same size was built and put in
operation since March of 2020. In the third phase, WCDA-3 began operation at the March
of 2021. For γ-ray induced showers, WCDA-2 and WCDA-3 have a threshold below 100
GeV, while WCDA-1 has the threshold of 500 GeV, because the 20" PMT and 3" PMT are
used to replace the the original design of the combination of 8" + 1.5" PMT pairs. [4]. A
typical event recorded by WCDA is shown in Fig.1.

Figure 1: A high energy event detected by WCDA full array.

The one square kilometer array(KM2A) consists of 5216 electromagnetic particle detec-
tors (EDs) and 1188 muon detectors (MDs). This array is mainly designed for γ rays and
CRs above tens of TeV. The EDs are used to reconstruct the main parameters of air showers,
such as the arrival direction and energy, as well as the core position and electromagnetic
particle number in the shower, etc. The MDs are used to discriminate electromagnetic
showers from hadronic showers. The ED is a scintillation detector covered by a 5-mm-thick
lead plate to absorb low-energy charged particles and to convert high energy γ rays into
electron-positron pairs. The MD is a water Cherenkov detector, a tank of 36 m2 with pure
water filled in. Each MD is covered by overburden soil of 2.5 m thick, which absorbs most
of the secondary electron/positrons and γ rays in showers. More details about the detectors
are presented in [3]. The full-KM2A array was completely deployed and started operation
since July 2021. A typical event recorded by KM2A is shown in Fig.2.

WFCTA has 18 Cherenkov telescopes. Each Cherenkov telescope consists of an array
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Figure 2: A typical event detected by full KM2A, these two maps show the triggered EDs and
MDs at the same time.

of 32 × 32 SiPMs and a ∼ 5m2 spherical aluminized mirror. It has a field of view (FOV)
of 16◦ × 16◦ with a pixel size of approximately 0.5◦ × 0.5◦. In the first observation stage,
the main axis of six telescopes are arranged to point at the zenith angle of 30◦, and cover
22◦ to 38◦ in zenith angle and 0◦ to 156◦ in azimuth angle. WFCTA, WCDA-1 and muon
detectors in KM2A are combined together as a calorimeter-like complex detector to measure
air shower energy and composition. The spectra of proton and light component around the
knee will be measured using the data taken in the first observation stage. More han 750
hours of shower data are collected and under analysis. In the second observation stage,
the main axis of eighteen telescopes are arranged to point at the zenith angle of 45◦, and
cover 37◦ to 53◦ in zenith and 0◦ to 360◦ in azimuth. WFCTA and KM2A are combined to
measure the energy spectra of iron and heavy component around the iron knee. The first
six telescopes are located at the southwest corner of WCDA-1, and has started operation
since October 2019. Now, the second stage of operation has started since July 2021. A
typical event recorded by WFCTA is shown in Fig.3.

Figure 3: A typical event from WFCTA full array.
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3. Gamma-ray Astronomy Science

3.1 Crab Nebular observation

The Crab Nebula is a bright source with steady γ-ray emission powered by the Crab Pul-
sar’s rotational energy, and well known as a standard candle for γ-ray astronomy. LHAASO
has detected γ rays from the Crab Nebula with high significance by both KM2A and WCDA
[4] [5], remarkably, LHAASO has also achieved the Crab energy spectrum over three energy
decades from 0.5TeV to 1.1PeV [6].

The Crab detection is important to validate the performance of KM2A and WCDA,
specifically to study the detector response to γ rays. KM2A is mainly designed to observe
a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.
Detailed studies of the performance of first operation stage with half-KM2A have been
carried out by Monte Carlo simulations. At 100 TeV with zenith angle less than 35◦, the
angular and shower core resolution are about 0.26◦ and 3m, respectively. The particle
density with distance < 50m to the shower core (denoted as ρ50), obtained by fitting the
lateral distribution with Nishimura-Kamata-Greisen (NKG) function, is used to estimate
the γ-ray energy. For energy above 100TeV, the energy resolution is better than 20% refering
to the Gaussian-like energy resolution function.

KM2A has an excellent γ-ray/background (mainly CRs) discrimination power by using
the underground muon detectors (MDs). Counting number of measured muons in a shower
is crucial to discriminate the muon-poor γ-ray induced shower from muon-rich CR-induced
shower. Therefor, the ratio between measured muons(Nµ) by MDs and electrons(Ne) by
EDs is used to discriminate primary γ-rays from cosmic nuclei. Fig. 4 shows the detection
rate of the CR-induced showers within a cone of 1◦ centered at the Crab. The muon-cut
filter requires that the number of Nµ detected by MDs in the shower must be less than
1/230 of Ne detected by EDs. The cut reduces the CR background by factors of 1000 and
500,000 at 50 TeV and 1 PeV, respectively. And the right panel of Fig. 4 shows a total
significance of Crab (> 25TeV ) with half-KM2A data collected from 11 Sep 2019 to 7 Jul
2020. The pointing accuracy of half-KM2A is thus obtained by fitting Crab position which
is < 0.1◦.

WCDA is designed to perform deep surveys for very-high-energy γ-ray sources. The first
Water Cherenkov detector WCDA-1 has been operating since April 2019. A performance
of WCDA-1 has been studied by observing the Crab Nebula as the standard candle. The
arrival direction and shower core position of primary γ-ray events are reconstructed and
verified by using the simulated events. The shower core location has a resolution of better
than 3 m for energetic events of 10 TeV and above. The angular resolution for the γ-ray
arrival direction is better than 0.4◦ above 3 TeV according to the well-measured detector
orientation and timing calibration for each detector unit. For energy estimation, the number
of triggered 8-inch PMT units Nhit is selected as a shower energy estimator. A Monte
Carlo simulation of the shower development is carried out to establish the energy response
function. The energy resolution is defined as a symmetric Gaussian function, and the energy
resolution is found to be 33% for γ rays above 6 TeV.
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Figure 4: Left panel: the rates of detection of γ rays from the Crab and the CR background events
above the shower energy E by KM2A in a cone of 1◦ centered at the Crab direction [6]. Right
panel: the significance map of Crab Nebular observed by half-KM2A.

Figure 5: Left panel: Two-dimensional significance map around the position of the Crab Nebular;
Right panel: the distribution of the significance among 3600×900 bins [4] using WCDA-1 data up
to 11 March 2020.

To maximize the sensitivity to γ-ray showers, the cosmic-ray background suppression is
performed by characterizing the features of showers induced by different primary particles,
so a parameter named compactness is employed in WCDA-1. Consequently, the cosmic-
ray background rejection rate is 97.7% around 1 TeV and 99.8% around 6 TeV with an
approximate photon acceptance of 50% after applying the compactness-based cut to sep-
arate gamma-induced showers from CR-induced showers. Crab Nebular observation with
WCDA-1 is carried out with all events collected in the period from 19 Apr 2019 to 11 Mar
2020. The significance map around Crab Nebula and distribution of the events as a function
of the significance are shown in Fig. 5. A clear Crab image with a significance of 77.4σ has
been achieved. The pointing accuracy of WCDA-1 as a gamma ray telescope is better than
0.1◦ above 1 TeV.

The spectral energy distribution(SED) of Crab Nebula in the range from 500 GeV to 1.1
PeV is determined by combining WCDA and KM2A data, shown in Fig. 6. This spectrum
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Figure 6: γ-ray flux of Crab Nebular measured by LHAASO and spectral fitting.

shows a gradual steepening over three energy decades and agreeing with other experiments
below 100 TeV. The consistent between WCDA and KM2A around the overlapping energies
is also approved as shown in the spectrum. LHAASO is thus recognized to be a unique
experiment to get an accurate ultra-high-energy(UHE) SED of Crab. The measured 1.1
PeV photon provides direct evidence for the acceleration of 2.3 PeV electron in the source.
According to this measurement result, the acceleration efficiency of electron can at least
reach to 15% of the upper limit according to the classical electrodynamics and ideal magne-
tohydrodynamics theory, thus surpassing the acceleration efficiency of supernova shock by
a factor of 1,000. This poses challenges to the standard paradigm of electron acceleration
in high-energy astrophysics, we reported this result in Ref. [6].

3.2 UHE Sky Survey

With less than one year operation of partly completed KM2A, there are many hot spots
as clusters of γ rays in specific directions of the sky [7]. By using a point-like template for
the Crab Nebula and LHAASO J2108+5157 and 0.3◦ extension templates for other bright
sources, we detected more than 530 photons in 12 multiple UHE γ-ray sources at energies
≥ 100TeV with statistical significance ≥ 7σ, and they are all located in Galactic plane,
shown in Fig. 7. The acceleration of protons to PeV energies requires extreme physical
conditions, and these 12 UHE sources detected by LHAASO leave an open window to the
origin of extreme accelerators.
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Figure 7: LHAASO sky map at energies above 100 TeV. The circles indicate the positions of
known very-high-energy γ-ray sources.

Above 400 TeV, KM2A measures γ rays essentially background-free, and every single
photon has its own energy measured independently. A photon with reconstructed energy
higher than 1.4 PeV in the 1◦ cone centred at the source location is detected from the
Cygnus region, the triggered map of this event is shown in Fig. 8. For this highest-energy
photon from the Cygnus region, the measured ratio Nµ/Ne = 1/941 rejects almost all
CRs, thus estimates the chance probability of 0.03% to mis-identified as a gamma ray
event. This event might be an evidence of the operation of a hadronic PeVatrons in the
massive star cluster. Adequate photon statistics provided by LHAASO for spectrometric
and morphological studies of this object, which is located in a rather complex region crowded
with several competing sources, is foreseen as crucial evidence in upcoming 1 or 2 years.

3.3 Galactic Sources

3.3.1 LHAASO J2032+4102

The UHE source LHAASO J2032+4102 is positionally overlapped with Cygnus Cocoon.
The significance map around Cygnus cocoon region above 25TeV is shown in Fig.9, and
a two-dimension Gaussian model with sigma fixed at 0.3◦ is used here. The maximum
significance is more than 20σ. The center of the emission is close to both the PWN and OB2
cluster. Due to the complex composition of this region, a multi-source fitting procedure was
adopted to fit the emission in this region simultaneously. The emission is well described by
three sources:A slightly extended source with Gaussian width of 0.24◦± 0.03◦ at the center
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Figure 8: The γ-ray event with 1.4PeV from Cygnus region.

of the region (RA =307.98◦ ± 0.03◦ , Dec = 41.42◦ ± 0.03◦), which maybe associated with
the PWN TeV J2032+4130. A very extended source with Gaussian width of 2.8◦±0.3◦ and
best fitted position at RA=308.2◦ ± 0.4◦ and DEC=41.3◦ ± 0.3◦, which is the counterpart
of GeV Cygnus Cocoon(shown in Fig.9). The third source is at RA=305.5◦ ± 0.2◦ and
DEC=40.4◦ ± 0.1◦,which maybe associated with Gamma Cygni.

3.3.2 LHAASO J1825-1326

LHAASO J1825-1326 (Figure. 10) is detected at an 18.0σ level above 25 TeV with an
extension of σ = 0.30◦ ± 0.06◦. The source has a spectrum fitted by a log-parabola with
a = 0.92, b = 1.19 (AICLOG = 11.6) or a power-law with Γ = 3.36 (AICPL = 14.8). There
are two energetic pulsars, PSR J1826-1334 and PSR J1826-1256, located in the source
region, which may be the energy sources of the UHE emission. In the VHE γ-ray regime,
HESS detected an energy dependent morphology which is consistent with the leptonic origin
of the γ-ray emission [7].
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Figure 9: The significance map in Cygnus Cocoon region above 25TeV. The blue diamonds marks
TeV sources TeV J2032+4130 and VER J2019+407. The two blue dashed circle marks two very
extended sources ARGO J2031+4157 and HAWC J2030+409. The yellow circle marks the source
LHAASO J3032+416.

3.3.3 LHAASO J1908+0621

LHAASO J1908+0621 is consistent with the MGRO J1908+06 which was discovered by
the MILAGRO collaboration [8] and later confirmed by the HESS atmospheric Cherenkov
telescope [9]. It spatially associated with a middle-aged supernova remnant (SNR) G40.5-
0.5 and an energetic γ-ray pulsar PSR J1907+0602 2021nature. The age of G40.05-0.5 is
estimated between 20 and 40 kyr and the distance is uncertain. The PSR J1907+0602 has a
characteristic age of 19.5 kyr and a spin-down luminosity of ∼ 3×1036erg s−1. The distance
of PSR J1907+0602 was estimated to be 3.2 kpc. The nature of MGRO J1908+06 remains
unrevealed and a single accelerator cannot explain the whole set of multi-wavelength data.

The significance map around LHAASO J1908+0621 with E ≥ 25 TeV are shown in
Figure 11. We use the two-dimensional Gaussian model template to study the morphology of
the source. The centroid of γ-ray emissions with energies above 25 TeV is R.A. = 287.04◦±
0.03◦(stat), Dec. = 6.24◦ ± 0.04◦(stat) (J2000) and the extension is σ = 0.57◦ ± 0.03◦.
Taking into account the Gaussian extension of 0.57◦, the resulting differential flux can be
fitted by a log-parabola for a = 2.27, b = 0.46 and a power-law for Γ = 2.89. The Akaike
Information Criterion (AIC) of log-parabola and power-law are 15.1 and 30.1.

The γ-ray spectral points with energies from GeV to several hundred TeV could be ex-
plained by accelerated electrons following a spectrum ofN(E) ∝ N−1.75

e exp{−Ee/(800 TeV)}.
Alternatively, the γ-ray emission could be produced by protons accelerated up to PeV col-
liding with the ambient dense gas. The spectrum of accelerated protons has a complex form
which is a broken power law with an exponential cutoff, with indices 1.2 and 2.7 below and

10
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Figure 10: Spectral energy distributions and significance maps of LHAASO J2226+6057 and
LHAASO J1825-1326 [7]

above 25 TeV and a cutoff energy of 1.3 PeV.

3.3.4 LHAASO J2108+5157

LHAASO J2108+5157 is newly discovered by LHAASO at approximately 9.5σ and 8.5σ

significance level in both energy bands of 25−100 TeV and >100 TeV, respectively [7]. This
source is not significantly favored as an extensive source with the angular extension smaller
than the point-spread function of KM2A. An upper limit on the extension of the source is
calculated to be 0.26◦ at 95% confidence level (CL). Its spectrum from 20 TeV to 500 TeV is
characterized by a power-law with index −2.83± 0.18(stat). No obvious counterparts were
found in the region of LHAASO J2108+5157 at other wavelengths. It is correlated with the
molecular cloud [MML2017]4607. The UHE γ rays could be explained by interactions of
protons with the ambient gas through the production and decay of π0 mesons (As shown in
Figure 12). The energy spectrum of protons follows a power-law with an exponential cutoff:
N(E) ∝ N−2

p exp{−Ep/(600 TeV)}. Other possible scenarios, such as a PWN, can also be
invoked to explain the KM2A observed γ rays. The primary electron spectrum follows a
power-law with an exponential cutoff: N(E) ∝ N−2.2

e exp{−Ee/(200 TeV)}. Because of the
absence of pulsar counterpart, the PWN scenario remains uncertain. So far, no conclusion
about the origin of its UHE emission can be achieved.

3.3.5 LHAASO J2226+6057

LHAASO J2226+6057 (Figure. 10) is detected at a significance of 18.0σ above 25 TeV,
exhibiting a log-parabola spectral for a = 1.56, b = 0.88 (AICLOG = 12.3) and a power-law
for Γ = 3.01 (AICPL = 24.4). The detected highest photon energies is 0.57±0.19PeV. The
Source is spatially associated with SNR G106.3+2.7 which is a comet-shaped radio source,
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Figure 11: Phenomenological fits to the γ-ray observations of LHAASO J1908+0621, and previous
observations of potential counterparts [7].

with a brighter ‘head’ and an extended ‘tail’ region. The ‘head’ region also contains an off-
center PWN in north named ‘Boomerang’ powered by the pulsar PSR J2229+6114, whose
characteristic age and luminosity are 10 kyr and 2.2 × 1037erg s−1. The very-high-energy
γ-ray emission above 10 TeV observed by ASγ is associated with a molecular cloud rather
than with the pulsar PSR J2229+6114 [7]. A dedicated analysis of LHAASO J2226+6057
from 500 GeV to 1 PeV is undergoing. This will provide crucial information to disentangle
the origin of the gamma ray emission observed.

4. Cosmic-ray Physics Science

LHAASO is a hybrid detector array for the purpose of precisely measure charged CR
induced air showers. WCDA or ED array can measure the shower arrival direction with a
resolution of 0.2◦ and shower location with a resolution of 2 m. WCDA can measure the
energy flux in a range of 5 m×5 m around shower cores. Muon detector array can measure
µ content with a dynamic range of 1− 104 muons for each MD. WFCTA can measure the
atmospheric depth of the shower maximum, Xmax with a resolution of 40 g/cm2. WFCTA
can also measure the shower energy with a resolution of 15%. Multi-parameter observation
of air showers allows us to measure the CR spectrum, elemental composition and anisotropy
with high resolution, which would be useful in searching for the origin of ultra-high energy
CRs, and improving the study of their acceleration and propagation in the Milky Way.

12
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Figure 12: The multiwavelength SEDs of LHAASO J2108+5157 with hadronic and leptonic
modeling [7]. The red points and arrows are the LHAASO-KM2A observations. The blue triangles
are the radio fluxes. The grey points and blue arrows are the Fermi-LAT spectral points and upper
limits.

The combination of WFCTA andWCDA is good for measuring the energy spectra of the
CR species over a very wide energy range from 1 TeV to 10 PeV, in which the knees of spectra
of protons and Helium nuclei are expected. The precise measurement of the knee structures
is important and requires the separation of proton showers from all other CR showers, and
H+He mixed samples from all other heavier nuclei induced showers, respectively. This is
under investigation still. The combination can provide an absolute energy scale calibration
with a proven technique of measuring the westward shift of the Moon shadow in the galactic
CRs due to the geomagnetic field (GMF) [10]. The displacement of the center of the shadow
is proved to be inversely proportional to the cosmic-ray energy[11].

In LHAASO experiment, the precise measurement of Moon shadow shift by WCDA
allows us to calibrate its energy scale up to 35 TeV. The scale can be propagated to WFCTA
by using the commonly triggered CR events by the two detector arrays. In current operation
phase, WCDA-1 data from May 1st, 2019 to Jan. 31th, 2020 has been collected, and
analyzed for measuring the cosmic-ray energy scale. The total effective observation time is
' 731.2 hours with zenith angles ≤ 45◦ for the Moon observation, and the total number of
events is about ' 4.17 million with arrival direction < 5◦ to the Moon position. To achieve
the energy calibration with WCDA-1, we need to (1) measure the Moon shadow shift as a
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function of the total number of photo-electron Npe as a shower energy estimator, i.e., the
displacement M vs. Npe; (2) set up the function between the displacement and primary CR
energy by tracing CRs with certain composition through GMF, M= 1.59◦/(E/Z), where E
is the particle energy in TeV and Z is the charge of nucleus in electron charge e; (3) solve
the average rigidity of CR events that trigger WCDA-1 in the relevant ranges of Npe by
using the air shower and detector response simulation, as well as the flux ratio between H
and He, the function of displacement M= 2.1/EWCDA is obtained, where EWCDA is the
median energy in TeV of the CR showers that have Npes in the corresponding intervals. So,
in the energy range from 6.6 TeV to 35.0 TeV, Npe can be used as an energy proxy according
to the established relation EWCDA = b(Npe)

β , where b = 1.33+5.29
−1.08,and β = 0.95+0.18

−0.17, as
shown in Fig. 13, with the deflecting angel ∆ as the bridge.

A set of commonly triggered events is used to propagate the absolute energy scale of
WCDA-1 to WFCTA, specifically by collecting the data observed at 10 nights in Jan 2020
with moonless and very excellent weather conditions. In order to achieve a more precise
energy reconstruction, the shower cores are required to locate inside the WCDA-1, as well
as the full Cherekov image should be measured by applying a telescope FOV cut. The
median energy reconstructed by WFCTA is found to be 21.9 TeV as shown in the left panel
in Fig. 13 in red and the median energy determined by WCDA-1 is 23.4 for the same bulk
of events as in black in the left panel in Fig. 13. This indicates that the energy scale of
21 ± 6, measured by WCDA-1, can be propagated to WFCTA with a uncertainty of 7%.
However, the uncertainty of the measured energy scale of 30% is largely dominated by
the low statistics of events using in the Moon shadow position measurement, which would
be improved by accumulating longer observation time in future. For showers with greater
energy, the energy reconstruction totally relies on the simulation of air showers and detector
response of WFCTA. More details about the energy scale calibration can be reached in [12].
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