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Figure 1: The number of events accumulated by DAMPE.

1. Introduction

The Dark Matter Particle Explorer (DAMPE, also known as Wukong in China) is a satellite-
borne, calorimetric type, high-energy particle detector dedicated to the indirect detection of dark
matter (DM) in space and astrophysical studies [1, 2]. As one of the four scientific space science
missions within the framework of the strategic priority science and technology projects in space
science of the Chinese Academy of Sciences, it was launched to a 500 km Sun-synchronous orbit on
Dec. 17th, 2015 from the Jiuquan Satellite Launch Center. The major scientific objectives addressed
by DAMPE include probing the dark matter via the detection of high-energy electrons/positrons
and gamma rays, understanding the origin, acceleration and propagation of cosmic rays in the Milky
Way, and studying the gamma-ray astronomy. During the 5.5 years of on-orbit operation, both the
satellite and the payload work perfectly. So far DAMPE has surveyed the whole sky for over 11
times and obtained more than 10 billion high-energy events as of June 30th, 2021 (Fig. 1).

The DAMPE detector consists of four sub-detectors (Fig. 2). They are the Plastic Scintillator
strip Detector (PSD; [3]), the Silicon-Tungsten tracKer-converter (STK; [4]), the BGO imaging
calorimeter [5], and the NeUtron Detector (NUD; [6]). The PSD measures the charge of incident
particles via the ionization effect, and is used as veto of charged CRs for 𝛾-ray detection. The STK
measures the trajectory and also charge of particles. The BGO is to measure the energy of incident
particles and provide electron-proton discrimination based on shower morphologies. The NUD
provides additional electron-proton discrimination through the neutron content difference between
hadronic and electromagnetic showers. The DAMPE detector is optimized for observations of
CR electrons/positrons (hereinafter CREs) and 𝛾-rays up to 10 TeV energies with unprecedentedly
high energy resolution and electron-proton discrimination capability, thanks to the design of a
full-absoption, thick (∼ 32 radiation lengths) calorimeter. It can thus improve significantly the
measurements of the CRE spectrum and the sensitivity of searching for DM particles. The on-orbit
calibration shows that each sub-detector works very stably since the lanuch [7, 8].
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Figure 2: Schematic view of the DAMPE detector [2].

2. On-orbit calibration and performance

DAMPE enables several modes for data acquisition (DAQ), including three “calibration modes”
for the calibration of the electronics linearity and pedestal, and the “observation mode” for science
data taking. Calibrations other than the electronics linearity and pedestal, including the minimum
ionization particle (MIP) response, light attenuation, dynode ratios, detector alignment etc. are
done with data taken in the “observation mode”. In each orbit, the DAQ system switches from the
“observation mode” to one “calibration mode” twice — each with about 40 seconds — when the
satellite is at a latitude of 20◦N. The details about the calibration of each sub-detector can be found
in [7].

The PSD detector is mainly used for charge detection. The particle charge is proportional to
the square root of the deposit energy in the PSD bar. For proton MIP events, the energy deposition
in the PSD is about 2 MeV cm−1. After a series of corrections such as the attenuation of scintillation
light in the PSD strip [9], the alignment of the PSD strips [10], the equalization of different strips,
as well as the quenching effect, we finally get high-resolution measurement of particle charges [11].
Fig. 4 in [11] shows the charge spectrum based on two years of flight data of DAMPE. Gaussian
fittings show that the charge resolution is about 0.2𝑒 for CNO and 0.3𝑒 for Fe. The PSD detector is
also used as the anticoincidence detector for 𝛾-ray detection. The charge-detection power of each
PSD strip is always greater than 99.7% [12], and the overall charge-rejection power of the whole
PSD is greater than 105.

The STK is primarily used to measure the trajectory as well as the charge (for 𝑍 < 8) of
particles. 𝛾-ray photons can convert into a pair of electron and positron in the tungsten plates
inserted into the STK, leaving also track imprint in the STK. The direction measurement basically
uses the information of hit positions, while the charge measurement uses the signal strength along the
trajectory. The calibration of the STK includes the pedestal and noise evaluation, the equalization
of the VA140 chips, and the alignment of silicon sensors [13–15]. The spatial resolution of the
STK is about 50 𝜇m after the alignment procedure [13]. Monte Carlo (MC) simulations show that
the angular resolution of normal incident photons is about 1.2◦ (0.1◦) at 1 (100) GeV [2].
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The BGO calorimeter is to measure the particle energy, to discriminate CREs from protons,
and to measure the trajectory of a particle though with limited resolution. The BGO calibration
includes the pedestal calibration, the MIP response, the PMT dynode ratio evaluation, the light
attenuation length calculation, and the trigger threshold determination [16]. The beam tests verified
that the energy resolution of the BGO reaches ∼ 1% for CREs when 𝐸 > 100 GeV [17].

The NUD is to measure the secondary neutrons produced by the particle shower in the BGO.
The pedestals of NUD are calibrated using periodic trigger events during the dedicated “pedestal
calibration mode” every day. The gate open for neutron signal integration is set to be 2.5 𝜇s to
suppress the charged secondary particles.

The satellite travels through the South Atlantic Anomaly (SAA) region nearly 7 times per day.
The very intensive particle hit rate within the SAA region may induce severe pileup effects, which
hinders science analyses. The trigger rates stored in the house keeping data are used to determine
the boundary of the SAA region [7, 18]. Photon events from bright 𝛾-ray sources are used to correct
the boresight alignment [19].

Fig. 3 shows the pedestal variation of the four sub-detectors of DAMPE since its launch, which
indicates its good stability.

Preliminary

PreliminaryPreliminary

Preliminary

Figure 3: The pedestal variation during the 5.5-year operation of DAMPE.

3. CRE spectrum

High energy CREs are ideal probe of nearby CR sources due to their limited propagation
distance. They are also sensitive to search for the annihilation or decay of DM particles. The
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observations of CREs are challenging because of the high fluxes from the proton background.
Therefore a high rejection power of CR protons is crucial to reliably identifying CREs. The DAMPE
experiment mainly uses shower morphologies in the BGO calorimeter to discriminate CREs from
protons (heavier nuclei can be significantly rejected through charge measurement additionally) [20].
A two-parameter method based on the quantification of the transverse and longitudinal distributions
of showers is developed. The transverse spread of a shower is described by an energy-dependent
root-mean-square (RMS) value of hit positions:

RMS𝑖 =

√∑
𝑗 (𝑥 𝑗 ,𝑖 − 𝑥𝑐,𝑖)2𝐸 𝑗 ,𝑖∑

𝑗 𝐸 𝑗 ,𝑖
, (1)

where 𝑥 𝑗 ,𝑖 and 𝐸 𝑗 ,𝑖 are coordinate and deposit energy of the 𝑗 th bar in the 𝑖th layer, and 𝑥𝑐,𝑖 is the
coordinate of the shower center of the 𝑖th layer. The longitudinal distribution parameter uses the
energy fraction of the last BGO layer (Flast) to describe the tail of a shower. A joint parameter,
𝜁 = Flast × (∑𝑖 RMS𝑖/mm)4/(8 × 106), is employed to select CRE candidates. We find that when
setting 𝜁 ≤ 8.5, a very clean CRE sample with only ∼ 2% contamination of the proton background
can be obtained for TeV energies. A few independent methods are also applied to distinguish CRE
from CR protons, giving similar results as this two-parameter method. More details can be found
in [21].

Using 530 days of flight data, we measure the CRE spectrum from 25 GeV to 4.6 TeV with high
precision [21]. Figure 4 shows the CRE spectrum measured by DAMPE, and that by AMS-02 [22],
Fermi-LAT [23], CALET [24], and H.E.S.S. [25, 26]. For the first time, the DAMPE result reveals
a clear spectral break of the CRE spectrum at ∼ 0.9 TeV at a ∼ 6.6𝜎 level, with the spectral index
changing from −3.1 to −3.9. Previously, the H.E.S.S. data together with low energy measurements
by other experiments showed only weak evidence for such a break, with relatively large systematic
uncertainties (shown by the shaded band in Fig. 4).

The DAMPE result has important implications on the understanding of the modeling of CREs.
The wide energy range coverage and high precision of the DAMPE spectrum can significantly
improve the constraints on the model parameters to fit the positron excess, either for astrophysical
models or the DM annihilation or decay [27]. The spectral break may naturally reflect the discretness
of the source distribution due to the fast cooling of TeV CREs [28]. Another interpretation ascribes
the softening to the confinement and cooling of CREs during the acceleration stage [29].

The uncertainties of the CRE spectrum by DAMPE include statistical and systematical parts.
A good news is that the measurement above ∼TeV region is still dominated by the statistical
uncertainties (See Fig. 5), which indicates the potential ability of DAMPE for CRE measurements
with the data accumulating in the future.

4. CR Nuclei spectra

The current precise measurements of the spectra of nuclei come from the magnetic spectrometer
experiments, such as PAMELA [30] and AMS-02 [22, 31, 32], but due to the limited magnetic field
strength, their measurements are limited to below a few TeVs/n. The balloon-borne experiments
such as ATIC [33] and CREAM [34, 35], and satellite experiment NUCLEON [36, 37] extend
the measurements to 100 TeV energies, but with large statistical and/or systematic uncertainties.
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Figure 4: The CRE spectra measured by DAMPE (red dots) [21], compared with results from AMS-02 [22],
Fermi-LAT [23], CALET [24], and H.E.S.S. [25, 26]. Shaded band shows the systematic uncertainties of the
H.E.S.S. measurements.
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Figure 5: The components of measuring uncertainties for the DAMPE CRE spectrum [21].

Interestingly, these results show hints that the energy spectra of proton, Helium, and heavier nuclei
soften at ∼ 10 TeV energies [35, 37]. It is thus very important to have improved measurements
with substantially higher statistics and better control of systematic uncertainties in the energy range
between TeV and 100 TeV to clarify the spectral behaviors of CRs. A relatively large acceptance
and thick calorimeter (about 1.6 nuclear interaction lengths) of the DAMPE makes it appropriate
for observations of CR nuclei.

After proper corrections such as the light attenuation correction, geometrical alignment and
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quenching-equalization [9–11, 38], the “PSD charge” distributions of selected events in the CR
proton analysis with several deposit energy ranges are shown in Fig. 6, along with the MC simulation
results. The Helium background is estimated according to a fitting to the charge distribution of the
flight data using MC templates, which turns out to be ≲ 1% for deposited energies below 10 TeV
and up to ∼ 5% around 50 TeV. The electron background is found to be extremely small thanks to
the high electron-proton discrimination capability of the DAMPE [21]. Results from similar work
in the CR helium analysis are shown in Fig. 7. And some independent approaches of studying the
CR helium are also being carried out [39].
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Figure 6: The PSD charge distribution during the CR proton analysis, compared with simulations of protons
and helium nuclei. Plot from [40].
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Figure 7: The PSD charge distribution during the CR Helium analysis, compared with simulations of protons
and helium nuclei. Plot from [41].
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Using the first 30 months of DAMPE data, we analyze the proton component in CRs [40] (see
Fig. 8 left). And with the first 4.5-year data, we analyze the CR Helium spectrum [41, 42] (see Fig. 8
right). Only events satisfying the high-energy trigger (HET) are selected. The major uncertainty
comes from the systematical uncertainty by different hadronic models used in the Monte Carlo
simulations [43].

The DAMPE results of CR proton and helium confirm the spectral hardenings at hundreds of
GeV/n revealed previously [22, 30, 33, 35–37, 44], and most importantly, reveals a mutual spectral
softening around 10 TeV/n in both proton and helium spectra. A smoothly broken power-law fit
gives that the spectral index changes from −2.60 to −2.85 at 13.6+4.1

−4.8 TeV for proton and from −2.41
to −2.92 at 34.4+6.7

−9.8 TeV for helium. These softenings feature may have very interesting implication
in modeling the origin and propagation of CRs (e.g., [45–47]).

The boron to carbon flux ratio directly indicates the average amount of interstellar material
traversed by cosmic rays [48]. Over the last 20 years, there have been many measurements on it
[49–52]. Fig. 9 shows the preliminary result on the measurement of B/C flux ratio [53], which is
consistent with results from other experiments at lower energies. The analysis up to 4 TeV/n is still
on going.
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Figure 9: Preliminary measurement of the boron to carbon flux ratio by DAMPE. Plot from [53].

The analyses of other CR nuclei are being carried out, such as the light component (proton
plus helium) spectrum [54], the carbon and oxygen fluxes [55], the iron spectrum [56], etc. The
massive Monte Carlo simulation plays a very important role in the nuclei analyses [57].

5. Cosmic ray anisotopies

Cosmic rays propagate diffusively in the turbulent magnetic fields of the Milky Way, which
results in nearly isotropy of their arrival directions in the sky. However, tiny anisotropies were
observed (e.g., [58]), reflecting important properties of the origin and propagation of cosmic rays.
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Currently the detection of the anisotropies is mostly from ground or underground experiments,
which have limited composition resolution and sky coverage. Furthermore, the ground-based air
shower experiments also suffer from problems of calibration of the absolute efficiencies for different
latitude bands. Therefore it is very important to measure the anisotropies from space direct detection
experiments.

There were efforts to search for anisotropies of either CR nuclei or electrons/positrons by
PAMELA [59], Fermi-LAT [60, 61], and AMS-02 [62]. No significant anisotropies were detected
except that PAMELA reported a potential detection of a dipole anisotropy using its calorimeter
sample of all CRs [63].

Using five years of the DAMPE data, we study the anisotropies of all CRs [64]. After removing
events recorded when the satellite is in the SAA region, we further select the events with maximum
zenith angles of 45◦ in the detector coordinate and deposited energies above 100 GeV in the BGO
calorimeter. Note that the primary events should have energies higher by a factor of 2 ∼ 3 in this
energy range. After all these cuts, we get a total number of events of about 4.44 × 107.

Preliminary Preliminary

Preliminary

Figure 10: Skymaps of DAMPE raw events (top-left panel), the reference exposure map from the rate-based
method (top-right panel), and the relative intensity map (bottom panel). Plot from [64].

The skymap based on the selected events in the equatorial coordinate is shown in the top-left
panel of Fig. 10. However, the exposure of the DAMPE is highly non-uniform. To obtain a precise
exposure map is crucial to the search for tiny anisotropies of CR arrival directions. The reference
exposure map is created with the rate-based method proposed in [60]. An average of 100 reference
maps is shown in the top-right panel of Fig. 10. The relative intensity map, defined as 𝛿𝐼 = 𝐷/𝑅−1,
where 𝐷 is the data map and 𝑅 is the reference map, is shown in the bottom panel. The result is
consistent with the null-hypothesis. The 95% confidence level upper limit of the dipole amplitude
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is 𝛿UL = 1.2 × 10−3 for five-year data sample. Further improvement of the sensitivity of anisotropy
searches can be expected with more data added.

6. 𝛾-ray observations

Gamma-ray astronomy is one of the three major scientific objectives of the DAMPE. Thanks to
its unprecedented high energy resolution, the DAMPE is expected to play a key role in searching for
monochromatic 𝛾-ray line emission. The observations of 𝛾-ray transients are also very interesting
and important in the multi-messenger era, particularly in the case that gravitational waves [65] and
very-high-energy astrophysical neutrinos [66] have been discovered.

Compared with charged CRs, the flux of 𝛾-rays is significantly smaller by a factor of 105 ∼ 106.
An effect way to pick out 𝛾-rays with little contamination of charged CRs is the key for studies of
the 𝛾-ray astronomy. A dedicated algorithm has been developed to resolve 𝛾-rays from the flight
data [12]. It includes joint efforts of electromagnetic and hadronic shower discrimination with the
BGO calorimeter and the veto of charged particles with the PSD. With such a method, we can reach
an effective acceptance of ∼ 0.19 (0.11) m2 sr at 10 (103) GeV of 𝛾-ray detection, with a purity of
∼ 99% for energies higher than 5 GeV [12]. Making use of the selected photons, we resolve more
than 200 𝛾-ray point sources from the five-year DAMPE data [67].

We perform the search for 𝛾-ray line structures using five years of DAMPE data [68]. The
scientific tool of DmpST and the embedded instrumental response functions (IRFs) based on MC
simulations have been used [70]. To improve the sensitivity, we develop two types of dedicated data
sets [68, 69] and adopt the signal-to-noise ratio optimized regions of interest (ROIs) for different
dark matter density profiles and different types of dark matter (annihilating or decaying). No line
signals or candidates are found between 10 GeV and 300 GeV in the Galaxy. The constraints on
the velocity-averaged cross section for 𝜒𝜒 → 𝛾𝛾 and the decay lifetime for 𝜒 → 𝛾𝜈, both at
95% confidence level, have been calculated and the systematic uncertainties have been taken into
account. Comparing to the previous 5.8 year results of Fermi-LAT [71], though DAMPE has an
acceptance smaller by a factor of ∼ 10, similar constraints on the DM parameters are achieved and
below 100 GeV the lower limits on the decay lifetime are even stronger by a factor of a few. Our
results demonstrate the potential of high-energy-resolution observations on dark matter detection.

Fermi bubbles, first discovered using the Fermi-LAT data, consist of two large bubbles, each of
which is approximately 40◦ wide and extends to 55◦ above and below the Galactic center [72, 73].
We use 4.8-year DAMPE photon data to analyze their emission. The significance of the FBs as
a whole is found to be ∼ 18.0𝜎 if the standard GDE model is adopted. The spectrum is well
consistent with that from the Fermi-LAT [73]. More details can be found in [74].

7. Other studies

The DAMPE data can also be used for studies on solar activities. We study the impact of a
big solar flare occurred in September 2017 on the low energy CRE fluxes, and observe the Forbush
decreases in the DAMPE data [75]. Both the amplitude and recovery time of fluxes of CRE show
clear energy-dependence, which is important in probing the disturbances of the interplanetary
environment by the coronal mass ejections.
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Figure 11: The constraints for annihilating and decaying dark matter. The left panel shows the ⟨𝜎𝑣⟩𝛾𝛾 upper
limits of annihilating DM assuming the Isothermal profile. The right panel presents the 𝜏𝛾𝜈 lower limit of
decaying DM assuming the NFW profile. Yellow (green) bands show the 68% (95%) expected containment
obtained from 1000 simulations of background emission with systematic uncertainties involved. The red
solid and purple dotted lines are the results with and without the systematic uncertainties respectively. The
blue dot-dashed lines show the 5.8-year Fermi-LAT constraints [71]. Plot from [68].

Quarks are established as fundamental constituents of hadrons in the standard model of particle
physics. They have fractional charges of 1/3 or 2/3, but do not appear individually according to the
quark confinement theory. Observations of fraction charge particles are important in probing new
physics beyond the standard model. We use MIP trigger events to do such searches of fractional
charge particles. The analysis method and progress can be found in [76].

8. Conclusion

The DAMPE mission has operated in space very smoothly since its launch. The detector works
continuously and stably, with over 10 billion CR events being recorded in its 5.5 year run. Careful
calibration using the flight data has been made, which verifies the designed performance of the
instrument and ensures good measurements of the charge, direction, energy, and type of incident
particles. Those physical quantities are the basis of the science analysis.

Precise measurements of the cosmic ray electrons/positions, nuclei and 𝛾-rays have been
performed. The physical results of DAMPE are shedding new light on the understanding of the
dark matter, cosmic ray physics and gamma-ray astronomy. More analyses are being carried out
along with the data accumulating, and we expect more results from DAMPE.
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