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1. Introduction

Astrophysical and cosmological observations provide strong evidence for the existence of dark
matter (DM); however, the nature of DM remains unknown. One candidate class of DM is weakly
interacting massive particles (WIMPs), which are expected to have masses from a few GeV to a few
TeV; see [1] for a comprehensive review. Such particles can interact with Standard Model (SM)
particles at or below the weak scale. These interactions allow for WIMPs to scatter off SM in large
celestial bodies, losing energy in the process and possibly becoming gravitationally bound. While
this can happen in any celestial body, in this work we will focus on capture by the Sun. Once
captured, WIMPs will undergo additional scatterings, and fall to the center of the Sun [2, 3]. As
WIMPs continue to be captured, an excess accumulates at the core of the Sun.

Another consequence of weakly interacting with the SM is that WIMPs can annihilate into SM
particles [4]. This will create neutrinos, either as a primary product, or as a secondary product when
unstable SM particle decay. One may then look for the neutrinos created by annihilating WIMPs as
a DM signature. This approach to detecting DM is known as indirect detection. For WIMPs with
mass above a few GeV, we expect the capture and annihilation processes to be in equilibrium in the
Sun, i.e. the capture rate and annihlation rate are equal up to a factor of 2. For a given WIMP mass
and solar model, the capture rate depends only on the WIMP-nucleon cross section, fj= [5], one is
able to probe the WIMP-nucleon cross section with solar WIMP searches.

To detect this flux, the IceCube Neutrino Observatory—a gigaton-scale neutrino telescope
located in the ice beneath the South Pole—can look for an excess of neutrinos from the direction
of the Sun. The size of the production region is smaller than the angular resolution of the IceCube
observatory, and so this is essentially a point source with a time-variable source location. We
expect the signal to be exponentially cut off above 3 TeV, since for neutrinos above this energy,
the mean free path of the neutrino is less than the radius of the Sun. In this energy range, the
only intrinsic background from the Sun are neutrinos produced in interactions between cosmic rays
and the solar atmosphere. Additionally, we expect a background of neutrinos and muons from
cosmic ray interactions in the Earth’s atmosphere. The uncertainty in the intrinsic background is
at the level of 30% [6–9], thus an observation of an excess above terrestrial and solar atmospheric
backgrounds would be compelling evidence for new physics. This contrasts with other indirect
searches, such as multimessenger detections from the galactic halo [10–14], where backgrounds
are weakly constrained.

2. Signal

In order to compute the expected neutrino yield from WIMP annihilation in the Sun, one
must must first compute the initial neutrino yield per annihilation in the center of the Sun. To do
this, one must simulate interactions and decays of the primary SM products with the surrounding
environment, and well as the interactions and decays of any secondary products which may be
produced. This can then be propagated to the detector to compute the final neutrino yield.

We developed the jaroa software [15] in order to compute the neutrino yields from WIMP
annihilation. This replaces WimpSim [16], which was used in the previous IceCube solar WIMP
search. This software takes initial SM spectra from WIMP annihilation and recursively simulates
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Figure 1: Flowchart of jaroa algorithm. Flow chart depicting the major steps in the calculating flux from
DM annihilation or decay. The light yellow boxes indicate direct calculation or decision making; other colors
indicate the main program used in each step.

interaction and decay for the initial byproducts, and any secondary byproducts. Once all remaining
particles are stable, it propagates the neutrinos from the center of the Sun to the detector using
the aSQuIDS software; see Fig 1 for a visual representation of the algorithm. Natively, the initial
SM spectrum from which the rest of the algorithm flows can be drawn from PYTHIA [17] or from a
recent calculation of initial spectra by Bauer, Rodd, and Webber [18], henceforth called the BRW
calculation.

The BRW calculation includes a full treatment of the electroweak (EW) correction, a phe-
nomenon in which, high-energy particles can radiate weak gauge bosons in the same manner as
photons may be radiated at lower energies. To do this, it evolves the initial spectrum from WIMP
annihilation and evolves it from the WIMP scale using the DGLAP equations and matches it onto
PYTHIA output in the regime in which PYTHIA has been well-validated by accelerator data. This
improves on previous implementations of the EW correction, such as the Poor Particle Physicists
Cookbook [19], which augmented PYTHIA with first order EW corrections, since it includes the
full physics of the SM. This calculation can have dramatic effects on the initial spectra, hardening
hadronic spectra since the radiated boson may give rise to a hard neutrino, and softening bosonic
channels as the initial energy is split among the radiated bosons. See Fig. 2 for a comparison of
initial a` spectra from different signal simulations.

3. Backgrounds

3.1 Background Types

3.1.1 Atmospheric Muons

Atmospheric muons created in cosmic ray interactions can imitate the signal muons created
from neutrinos that we are attempting to find. Such muons are the dominant source of background
in the southern sky and taper off as the overburden increases in the northern sky. For this reason
this analysis is mostly restricted events which seem to come from the northern sky. The Improved
Northern Tracks selection is >99%pure in neutrinos, and so this background can safely be neglected.
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Figure 2: Comparison of a`-yield using four different signal generators for DM at the Sun center. The
major contribution to differences between the lines is that a more complete treatment of the EW correction
has been implemented in PPPC and jaroa (BRW). As expected, the magnitude of this difference grows as
the mass of the DM increases. When comparing the PYTHIA-based calculations, the 11̄ channel in jaroa is
slightly harder than WimpSim which is consistent with the result from [20]. The BRW calculation does not
extend to masses below 500 GeV and so it is absent from the first column.

3.1.2 Atmospheric Neutrinos

The dominant background for this analysis is conventional atmospheric neutrinos, since these
neutrinos can only be differentiated from the signal via the directional, flavor, and energy distribu-
tion. There are insufficient statistics to include these two latter pieces of information in the analysis,
and so we must rely solely on the former.

3.1.3 Solar Atmospheric Neutrinos

There is small, well-predicted but yet unmeasured flux of neutrinos that comes from cosmic
ray interactions with solar matter. Although small, this background also originates in the Sun, and
so it cannot be differentiated by its directional distribution. This it is an irreducible background for
this analysis. In fact the this flux creates a floor for solar WIMP searches as computed in [7, 8].
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3.2 Background from Data

We compute our background distributions from scrambled data. To do this, we sample random
azimuth directions for each event. As long as an event is not near the polls, this will result in a
randomized distribution while preserving the zenith dependence of the detector efficiency. This
procedure will not work as well for events near the poles, i.e. cos \zen ' ±1; however, we do not
need to worry about such events in this analysis since the Sun is never near the poles, and thus
near-pole events will not contribute to the likelihood.
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Figure 3: Background distribution from over-
sampled, scrambled data. Distribution of back-
ground events in the region near the Sun as a func-
tion of the reconstructed energy and the opening
angle from the center of the Sun. #events,bg =

665, 291

Computing our background in this way has
a number of advantages, including freedom from
systematic uncertainties associated with our back-
ground distributions. One challenge associated with
this is that the limited data can lead to sparse ex-
pected background distributions. This issue is espe-
cially pronounced in the region of interest for this
analysis, i.e. the few degrees around the Sun. The
5 degrees around the Sun only accounts for 0.2% of
the phasespace, and so this region is particularly sus-
ceptible to erratic behavior associated with limited
statistics.

To remedy this issue, we oversample the data,
selecting many sets of random azimuth angles and
dividing the total number of events by the number of
sets generated. This preserves the number of events
in the sample, but fills in gaps the distribution arising
from limited statistics. See Fig. 3 for the expected
distribution of background events in the 10 degrees
surounding the Sun.

4. Event Selections

This analysis uses a custom event selection, combining preëxisting low- and high-energy
selections with a medium-energy selection which is currently under development. This medium-
energy selection is intended to bridge the gap between the low- and high-energy selection, see Fig. 4.
The 1̃00 GeV region where this gap in coverage appears is particularly important for solar WIMP
searches since it is the preferred region for the WIMP which occurs in supersymmetric extensions
of the SM. All of these selections are so-called ‘upgoing’ selections, restricting themselves to
regions where much of the atmospheric muon background has been filtered out by the Earth. The
high-energy portion of the selection is a high-purity muon neutrino sample, while the low- and
medium-energy selections contain all neutrino flavors. In this section, we will briefly outline the
event selections being used for this analysis, and give current progress on the medium-energy
selection.
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4.1 Low-Energy Selection

Located within the IceCube instrumented volume is a more densely packed sub-detector known
as DeepCore. In DeepCore, the inter-string distance ranges from 42 m to 72 m, while the vertical
DOM spacing ranges from 7 m to 10 m. This higher density of DOMs allows DeepCore to detect
neutrinos with energies as low as a few GeV.

Figure 4: Stacked distribution solar WIMP
rates. Rates for jj → 11̄ with <j = 500 GeV
as a function of true neutrino energy in the low-
energy (blue) and high-energy (red) selections.
Note the gap in coverage for neutrinos with ener-
gies in the range of 80 GeV to 300 GeV. H-axis in
arbitrary units

OscNext is a suite of atmospheric neutrino os-
cillation analyses which use DeepCore data from
2011-2019. These analyses are joined by a com-
mon event selection whose purpose is to achieve
a neutrino-dominated event sample by rejecting a
prevailing background from atmospheric muons and
detector noise. While, this event selection is quite
sophisticated and describing it thoroughly is beyond
the scope of this proceeding, wewill outline a few as-
pects of the selection which will be important later.
We do encourage the reader to read more detailed
descriptions of the selection

The final selection contains neutrinos with re-
constructed energies ranging from5GeV to 300GeV,
and contains all neutrino flavors. At final level, the
sample has a nominal neutrino rate of 0.991 mHz,
a nominal muon rate of 0.034 mHz, and a nominal
noise rate of 0.000 mHz. The selection obtains this
level of purity using a series of selection cuts combining traditional straight cuts and boosted deci-
sion trees (BDTs). Additionally, oscNext uses a BDT to differentiate between cascades and tracks.
This approach of successive BDTs will be emulated in the medium event selection as well.

For Analysis B, we use a modified version of the oscNext selection. The first modification is
to remove events which overlap with the high-energy selection. This ensuers that events are not
being double counted and that the selections are statistically independent. Furthermore, we are
investigating the effect of relaxing oscNext cuts on our sensitivity. Since this analysis amounts to
looking for a point source, we may be able to tolerate more background than the oscNext analyses.

4.2 High-energy Selection

For high energy events, we use a newer IceCube dataset using 9 years of 86-string data from
2011 to 2020, notably including the solar minimum of 2019-2020. This newer IceCube dataset
features an improved energy reconstruction and angular reconstruction, and includes data from all
9 years feature the full detector configuration. The event selection is limited to upgoing events,
using the Earth as an effective atmospheric muon veto to create a high-purity neutrino sample.
The event selection is limited to a` + ā` events, owing to their superior angular reconstruction at
high-energies. Compared to the OscNext selection, this leads to events being more concentrated in
the direction of the sun.
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4.3 Medium Energy Selection

At around �a =100GeV, there is a gap in coverage between the low- and high-energy selections,
see Fig. 4. Since the flux of solar atmospheric neutrinos is higher at lower energies, it is import
to have coverage in this energy regime. To do this, we employ IceCube’s ‘LowUp Filter.’ This
low-level trigger was designed to target low-energy, up-going neutrinos. This was originally used in
IceCube’s searches for neutrinos coming from dark matter annihilation in the Sun. In such analyses,
the 100 GeV region is important for theoretical reasons. Since these analyses share a source origin
and target energy regime, it is natural to adapt the methods of one to the other.

After having selected events which pass the LowUp filter and having filtered events which may
be in other portions of the selection, we plan to emulate the approach of the low-energy selection.
We perform computationally inexpensive reconstructions and make a conservative cut on zenith
angle to filter out much of the atmospheric muon background which dominates in the southern sky.
After this cut, the data rate is sufficiently low to use a BDT to differentiate muons from neutrinos;
see Fig. 5 for the current performance of this BDT. At this point, the data rate has been cut to a
sufficiently low level to allow more computationally expensive reconstructions to be run. We are
in the process of studying different reconstructions in order to understand which will optimize our
sensitivity.

Finally, we intend to make a final BDT to differentiate solar atmospheric neutrinos from
conventional atmospheric neutrinos. While this is difficult given that both are neutrinos, there are
differences between the two populations. First, there are differences in the zenith and energy spectra
of the two populations. Additionally, while the flavor composition of each is the same at production,
solar atmospheric neutrinos are able to oscillate into other flavors, leading to more cascade-like
events in the solar atmospheric population. To exploit this latter fact, we will include metrics which
are tied to particle identification in this BDT, in addition to directional and energy quantities. Since
the result of this BDT is unlikely to provide clear distinction between the two populations, we plan
to let the output of it enter as an analysis variable.

5. Analysis Methods

5.1 Binned Likelihood Analysis

The second analysis uses a binned likelihood method. Since each portion of the event selection
is independent by construction, the likelihood factors to give:

Ltot = LLE LME LHE, (1)

where LLE, LME, and LHE are the likelihoods for the low-energy, medium-energy, and high-energy
subselections. In the 8Cℎ bin, given a nominal number signal events `B,8 and nominal number of
background events `B,8, we define the likelihood as:

L(=B, =1 |`B,8 , `1,8) =
4−`8 · ``1,8

8

`1,8!
, (2)

where =B and =1 are the normalizations of the signal and background distributions with respect to
the nominal models and `8 = =B`B,8 + =1`1,8 . We then define the contribution of the 8Cℎ to the test

7
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Figure 5: Performance of the `BDT. Initial performance of the BDT which will be used to differentiate
muons from neutrinos. By retaining only events with a score lower than 0.25, we can retain 90% of neutrino
events while cutting the muon background by an order of magnitude.

statistic of a model hypothesis as:

)(8 = )((=B, =1 |`B,8 , `1,8) = −2 log
(L(=B, =1 |`B,8 , `1,8)
L(0, =1 |`B,8 , `1,8)

)
. (3)

The total test statistic is given by a double sum over the bins in each subselction and over the
subselections themselves, i.e.:

)( = −2
{LE,ME,HE}∑

9

∑
8

log
(L 9 (=B, =1 |`B,8 , `1,8)
L 9 (0, =1 |`B,8 , `1,8)

)
(4)

We may then compute our sensitivity to a given model by randomly choosing numbers from a
Poisson distribution with an expectation in each bin equal to =B`B,8 + `1

6. Results

In Fig 6, we show sensitivities computed using the low- and high-energy portion of this event
selection, compared to limits obtained from previous solar WIMP analyses. This analysis has
world-leading sensitivities over the WIMP mass range from <j = 10 GeV to <j = 10 TeV under
the assumption that WIMPs annihilate to the ,+,− or g+g−. Under the assumtion that WIMPs
annihilate to 11̄, Super-Kamiokande is more sensitive for <j = 10 GeV. This is because hadronic
channels are generically softer, and so Super-Kamiokande, which is optimized for lower-energy
neutrinos, has an advantage in this channel.

8
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Figure 6: Sensitivities of this analysis using low- and high-energy selection.
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