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One of the consequences of having a high-density calorimeter as part of an experiment is a large 
number of secondary shower particles generated in the calorimeter -- some of which scatter back 
up towards the charge measurement devices. This so-called "backscatter effect" can interfere 
severely with accurate charge measurement of the primary nucleus, especially at high energies, as 
the number of backscattered particles increases with the incident energy. In this analysis, we study 
the effect of backscattered particles on particle identification by simulating the ISS-CREAM 
instrument detector model response using the GEANT3 simulation package [1] with the FLUKA 
hadronic model [2]. Our study shows the importance of the fine segmentation of the charge 
detectors above the calorimeter. This segmentation minimizes backscattered particle 
contamination in the same charge detector segment as the incident particle, which helps avoid 
charge misidentification. Here we present simulation results regarding charge measurements, 
including tracking resolution, backscattering effects, and charge determination efficiency. 
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1.  Introduction 
When a high-energy proton (or nucleus) enters the calorimeter module, it soon undergoes a 

nuclear interaction, generating a large number of secondary particles (mainly pions) that carry off 
a significant fraction of its energy. The neutral pions decay almost immediately into photon pairs 
and initiate electromagnetic (EM) showers or cascades (extensive collections of electrons, 
positrons, and photons). The surviving primary particle and charged secondaries then continue 
into the calorimeter. Some of these energetic charged hadrons will interact again, and fractions of 
their energy are also transferred to EM cascades.  

Most high-energy shower particles have a ‘forward’ momentum component relative to the 
incident trajectory. However, many lower-energy particles move ‘backward’. Signals from some 
of these particles will overlay that of the primary particle in the charge detector, making charge 
measurement more challenging. Indeed, this is a rather widely accepted explanation for the 
misidentification of protons as He nuclei in past experiments [3]. To study the effect of 
backscattered particles on particle identification, we have developed a simulation model for the 
ISS-CREAM instrument detector response using the Monte Carlo method.   

2. ISS-CREAM Instrument 
The ISS-CREAM instrument consists of complementary and redundant particle detectors 

(Figure 1). An ionization calorimeter determines the energy of cosmic ray particles, provides 
tracking, and a high energy trigger. Carbon-Targets induce hadronic interactions. The four-layer 
Silicon charge detectors (SCD) provide precise charge measurements. Top/bottom counting 
detectors (TCD/BCD) provide shower profiles for electron/hadron separation and a lower energy 
trigger. The boronated scintillator detector (BSD) provides additional electron/hadron 
discrimination using thermal neutrons produced by particles that interact within the calorimeter. 
For a detailed description of ISS-CREAM instrument configuration, refer to [5]. 

3. Monte Carlo Simulations 
Our simulation model is based on the GEANT3 Monte Carlo simulation toolkit, written in 

Fortran, and has a large set of physics processes handling the complicated interactions of particles 
in matter. GEANT4 is the successor of GEANT3, re-designed for the next generation of 
experiments using an object-oriented environment, and is widely used for particle simulations. 
However, for this study, we used GEANT3 for consistency with the CREAM balloon experiment 
that had used GEANT3. Calorimeter science in GEANT4 is unchanged. We have tested several 
hadron interaction packages and chosen FLUKA as the baseline for our simulation model [6]. The 
ISS-CREAM instrument [7] simulation was configured to be as realistic as possible [4]. In this 
study, protons were generated isotropically over an incident energy range from 100 GeV to 500 
TeV. A typical event passes first through the charge module, then interacts in the carbon target, 
and finally develops a shower in the calorimeter (Figure 2). 

4. Data Analysis  
The simulation results presented here were obtained by selecting events in which the 

particles enter the SCD, pass through all the calorimeter layers, have their first interaction 
anywhere in the carbon target, and deposit significant amounts of energy in many (≥ 6)  layers of 
the calorimeter for tracking. A sparsification scheme (discarding channels without signal 
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significantly above the pedestal) is implemented with a 3 MeV threshold that does not degrade 
calorimeter performance over the incident energy range. 

                                                                                         200 GeV incident proton 

     
 
   
                                                               
 

4.1 Event Reconstruction 

 A tracking algorithm is used to reconstruct the incident particle trajectory by calculating the 
energy deposit centroid in each calorimeter layer, thereby providing up to 10 × 10 (x,y) cascade 
coordinate pairs. The cascade axis is determined by the linear fitting of these coordinates 
separately in the x and y directions. Two requirements are applied to the tracking algorithm to 
reduce fluctuations: (1) each calorimeter layer used in the fitting is required to have an energy 
deposit greater than 3% of the total calorimeter energy deposit, (2) an event is accepted if it has 
at least three calorimeter layers that satisfy the above condition in both the x and y direction --  
otherwise, it is rejected. 

4.2 Trajectory Resolution 

The deviation between the actual incident position and the reconstructed position is a 
Gaussian distribution and the one σ error (position resolution) at the top of the calorimeter is 
∼0.18 cm as shown in Figure 3: for the x direction (left), and the y direction (right).  

 

                             
 
 

 

Figure 1. Simulated ISS-CREAM detector 
configuration [4] 

Figure 2. An example of a simulated event: 
gamma (blue), charged particles excluding 
muons (red), and neutral hadrons or 
neutrinos (black) [4] 

Incident Energy (GeV) Incident Energy (GeV) 

Figure 3. Incident energy dependence of the position resolution for incident protons; calorimeter (filled 
black circles),  distance from top of the calorimeter 38.45 cm (open red squares), 34.65 cm (filled green 
squares), 30.85 cm (open blue circles), 27.05 cm (filled black triangles) from top to bottom.   
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By extrapolating the reconstructed trajectory to the 4 layers of SCD, the entrance position 
of the primary particle at each SCD layer is calculated. The distance from the top of calorimeter 
to each SCD layer is 38.45 cm, 34.65 cm, 30.85cm, and 27.05 cm, from top to bottom. The 
position resolution at each SCD layer gets worse with distance from the calorimeter due to the 
increasing lever arm. The position resolution at the SCD is about 1 pixel (E ≥ 2.7 TeV). Dotted 
lines on Figure 3 represent the SCD pixel width (left) and length (right). The SCD resolution is 
not good at low energies (E < 2.7 TeV) due to undeveloped shower cores.                       

4.3 Charge Determination Algorithm 

In order to determine the incident particle charge, the reconstructed shower axis from the 
calorimeter is extrapolated to the SCD and a 10 cm × 10 cm, circle of confusion, centered on the 
extrapolated position, was scanned to select the highest signal pixel [8]. If no signal is found, the 
event is considered not to satisfy the charge requirement and is rejected. If found, the highest 
signal is then corrected for the particle path length (calculated from the reconstructed incidence 
angle). The signal reflects the ionization energy loss per unit path length (dE/dx) of an incident 
particle in the SCD, which is proportional to Z2. The resulting Z distribution is shown in Figure 
4. Events with Z ≤ 1.732 are identified as protons. Their peak values are 1. However, as energy 
increases, both the mean and RMS values get larger due to more backscatter at higher energies. 
The mean also increases due to being closer to the calorimeter. 

 

                                                  

 

 
 
 

SCD Charge (Z) 

Figure 4: SCD layer charge signal distributions for protons with incident energies of 3 TeV, 10 TeV, and 200 
TeV from left to right (for the four different layer distances of 38.45 cm, 34.65 cm, 30.85 cm, and 27.05 cm 
from top to bottom) 
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4.4 Backscattering Effect versus SCD Distance from the Calorimeter 

Figure 5 shows the charge determination efficiency: the fraction of events correctly 
identified as a proton among the reconstructed proton MC events that traverse SCD active area. 
The efficiencies at low energies are different from those at high energies. At lower energies (E < 
2.7 TeV) the charge determination efficiency increases with energy mainly due to tracking 
uncertainty: Since shower core is not well-developed at low energies, the tracking resolution gets 
better as energy increases. However, at higher energies (E > 30 TeV), the efficiency decreases as 
energy increases due to the presence of more backscattered particles. In the low energy range, the 
charge determination efficiency is mainly affected by the tracking resolution, while in the high 
energy range it is mainly affected by backscattered particles. At mid-range energies (2.7 TeV ≤ E 
≤ 30 TeV),  the efficiency is about 90% -- relatively independent of the incident energy. 

 

                   
             
 
 
 
 
     
 

The SCD layer distance dependence of the charge determination efficiency is shown as a 
function of distance from top of the calorimeter in Figure 6. It can be seen that the charge 
efficiency is quite linear with distance. The efficiency is improved with distance from the 
calorimeter due to the reduction of backscattered particles. At E = 200 TeV the efficiency is ~86% 
at 38.45 cm while it is ~73% at 27.05cm. The slope steepens as energy increases. Table 1 is a 
summary of the linear fit. 

Figure 7 shows the misidentified proton (Z >1.732) fraction among the reconstructed MC 
events thrown with Z>0, with respect to incident energy. At up to ~3 TeV incident energy the 
misidentified fraction is ~2.75%, and the trend is almost flat. However, over the higher energy 
ranges the misidentified fraction increases with energy due to the increase of backscattered 
secondary particles. The log of the fraction in % is proportional (slope of 0.29 ± 0.02) to the log 
of the incident energy. Figure 8 plots the misidentified fraction as a function of distance from top 
of the calorimeter. The misidentified fraction linearly decreases as distance increases and the slope 
is steeper as incident energy increases. Table 2 is a summary of the linear fits. At 1 TeV the 

Incident Energy (GeV) Distance (cm) 

Figure 5: Incident energy dependence of charge 
determination efficiency: distance from top of the 
calorimeter is 27.05 cm (green upside down 
triangle), 30.85 cm (blue rectangle), 34.65 cm (red 
triangle), and 38.45 cm (black circle) 

Figure 6: SCD layer distance dependence of 
charge determination efficiency: incident 
energy 2.7 TeV (black upside down 
triangle), 10 TeV (blue circle), 100 TeV 
(green rectangle), 200 TeV (pink triangle), 
500 TeV (red diamond), and linear fit (solid 
line) 
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misidentified fraction decreases by 0.15% for each 1 cm from the top of the calorimeter while at 
500 TeV by 1.97%. The misidentified fraction is 2.28% with 1 TeV (at 38.45 cm) and 41.6% with 
500 TeV (at 27.05 cm). 
 

           
 
 

 

                             
 
 
 
 
 
     
    

           
   
      

Table 1: Linear fit of charge determination efficiency over distance from top of calorimeter: 
incident energies of 2.7 TeV, 10 TeV, 100 TeV, 200 TeV and 500 TeV. 

Incident Energy (GeV) Distance (cm) 

Figure 7: Incident energy dependence of the 
misidentified fraction at 38.45 cm from the  
top of  the calorimeter. The dotted line is a 
guide to the eye. 
 

Figure 8: SCD layer distance dependence of  
the misidentified fraction: incident energy 1 
TeV (black circle), 10 TeV (blue triangle), 
100 TeV (green rectangle), 200 TeV (pink 
triangle), 500 TeV (red diamond), and linear 
fit (solid line). 
 

Table 2: Linear fits of misidentified fraction with respect to distance from the top of the calorimeter: 
incident energies of 1 TeV, 10 TeV, 100 TeV, 200 TeV and 500 TeV.  
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4.5 Charge Detector Segmentation and the Backscattering Effect 

As previously demonstrated [6], a segmented detector is much less prone to back-scatter 
problems. In the previous section we discussed charge measurement and the backscattering effect 
for the 2.12 cm2 pixel size segmentation of the ISS-CREAM SCD charge detector. In this section, 
the backscattering effect with bigger segments is analyzed to demonstrate the segment size 
dependence on charge resolution. Figure 9 shows the misidentified proton fraction as a function 
of segment area. The misidentified fraction increases with area, and the area dependence is 
stronger at higher incident energies. This area dependence increases with energy, as demonstrated 
in Figure 10, which plots the misidentified fraction vs. area slope as a function of incident energy. 
For E = 100 GeV the fraction is 2.4% with 2.12 cm2 segmentation and increases up to 7.9% with 
766.2 cm2, while for 500 TeV, 23.5% and up to 93.3%, respectively. It is clear that fine detector 
segmentation reduces the effect of back-scatter.  

 

          
 

 
 
 

 

5. Summary  
It has been shown that the backscattering effect increases with incident energy and 

increasing detector pixel segment size. The misidentified nuclei fraction in the ISS-CREAM SCD 
(with 2.12 cm2 segments) is 2.71% at 1 TeV and increases up to 12.93% at 200 TeV. With a 256.82 
cm2 segment size the misidentified fraction is 8.57% at 1 TeV and increases up to 69.03% at 200 
TeV. For larger segments the energy dependence is even stronger. Our study shows that fine 
segmentation of the charge detector can limit the backscattering effect quite significantly. 
Simulations with GEANT4 are currently in progress. The next step will be to compare GEANT3 
simulation results with GEANT4. 

Area (cm2) 

Figure 9: Misidentified fraction over segment size at 
distance 38.45 cm: incident energy 100 GeV (red), 1 
TeV (black), 10 TeV (blue), 100 TeV (green), 200 TeV 
(pink), 500 TeV (light blue), and linear fit (solid line) 
 

Incident Energy (GeV) 

Figure 10: Segment size dependence of 
misidentified fraction over incident energy. 
The dotted line is a guide to the eye. 
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