
P
o
S
(
I
C
R
C
2
0
2
1
)
0
9
7

ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

ONLINE ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

37th International 
Cosmic Ray Conference

12–23 July 2021

Cosmic-ray Heavy Nuclei Spectra Using the ISS-CREAM
Instrument

S.C. Kang,a,∗ S. Aggarwal,b,c Y. Amare,b D. Angelaszek,b,c D. Bowman,c Y.C. Chen,b,c
G.H. Choi,d M. Copley,b L. Dermoe,e L. Eraud,e C. Falana,b A. Gerrety,b J.H. Han,b
H.G. Huh,b A. Haque,b,c Y.S. Hwang,a H.J. Hyun,a H.B. Jeon,a J.A. Jeon,d S. Jeong,d
H.J. Kim,a K.C. Kim,b M.H. Kim,b H.Y. Lee,d J. Lee,d M.H. Lee,b L. Lu,b J.P.
Lundquist,b L. Lutz,b A. Menchaca-Rocha, f O. Ofoha,b H. Park,a I.H. Park,d J.M.
Park,a N. Picot-Clemente,b R. Scrandis,b,c E.S. Seo,b,c J.R. Smith,b R. Takeishi,d P.
Walpole,b R.P. Weinmann,b H. Wu,b,c J. Wu,b,c Z. Yin,b,c Y.S. Yoonb,c and H.G. Zhangb

aDept. of Physics, Kyungpook National University, Republic of Korea
bInst. for Phys. Sci. And Tech., University of Maryland, College Park, MD, USA
cDept. of Physics, University of Maryland, College Park, MD. USA
dDept. of Physics, Sungkyunkwan University, Republic of Korea
eLaboratoire de Physique Subatomique ed de Cosmologie, Grenoble, France
f Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico
E-mail: sinchul1216@gmail.com

Cosmic Ray Energetics AndMass for the International Space Station (ISS-CREAM) was designed
to study high-energy cosmic rays up to PeV and recorded data fromAugust 22nd, 2017 to February
12th, 2019 on the ISS. In this analysis, the Silicon Charge Detector (SCD), CALorimeter (CAL),
and Top and Bottom Counting Detectors (TCD/BCD) are used. The SCD is composed of four
layers and provides the measurement of cosmic-ray charges with a resolution of ∼0.2e. The
CAL comprises 20 interleaved tungsten plates and scintillators, measures the incident cosmic-ray
particles’ energies, and provides a high energy trigger. The TCD/BCDs consist of photodiode
arrays and plastic scintillators and provide a low-energy trigger. In this analysis, the SCD top
layer is used for charge determination. Here, we present the heavy nuclei analysis using the
ISS-CREAM instrument.
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1. Introduction

Cosmic-ray heavy nuclei include both primary and secondary cosmic-rays. Astrophysical
sources directly produce primary cosmic-rays, and secondary cosmic-rays are produced from colli-
sions of primary cosmic-rays with the interstellar medium. The investigation of cosmic-ray heavy
nuclei can provide the keys to the propagation and acceleration mechanisms of cosmic rays [1–3].

The balloon-borne Cosmic-Ray Energetics And Mass (CREAM) experiment reported impor-
tant results such as spectral hardening around 200 GeV/nucleon [4]. The CREAM payload was
transformed for accommodation on the International Space Station (ISS) after the last flight in 2016.
This version of CREAM, aka ISS-CREAM, was launched on August 14, 2017, aboard the SpaceX
CRS-12 Dragon spacecraft. The ISS-CREAM experiment recorded cosmic-ray data from August
22, 2017 to February 12, 2019, which is used in the paper’s heavy nuclei analysis.

2. ISS-CREAM Instrument

The ISS-CREAM instrument consists of several sub-detectors, as shown in Fig. 1. In this
analysis, the Silicon Charge Detector (SCD), CALorimeter (CAL) and Top, and Bottom Counting
Detectors (TCD/BCD) are used. The SCDmeasures the charge of cosmic-ray particles and consists
of 4 layers, each with a 78.2 cm × 73.6 cm active area [5]. Each layer has 2688 small silicon pixels,
1.38 cm × 1.55 cm in size, to reduce the effect of backscattered particles.

The CAL consists of 20 layers that consist of tungsten plates and fifty scintillating-fiber ribbons
[6]. The surface area of each layer is 50 × 50 cm2. The length of the CAL is 20 X0 radiation
lengths. Because the scintillating-fiber ribbons alternate directions in each layer, the CAL not
only measures the energy of cosmic-ray particles, it also reconstructs tracks from particle showers.
Additionally, the CAL provides a high energy trigger when cosmic-ray particles leave signals
exceeding a threshold in 6 consecutive layers.

The TCD/BCDs each consist of 20 × 20 photodiode arrays and plastic scintillators [7]. The
TCD/BCDs measure showers’ longitudinal and lateral profiles as they are placed above and below
the CAL with two-dimensional photodiode arrays. Also, the TCD/BCD provides a trigger when
cosmic rays leave signals exceeding a threshold that is lower than the CAL threshold. The lower
threshold means that the TCD/BCD triggers on lower-energy cosmic rays than the CAL.

3. Data Analysis

All 539 days of ISS-CREAM data are used in this analysis. Particle tracks path length and
SCD hit positions are reconstructed using CAL shower profiles. Path length corrections are applied
to the SCD silicon pixels for measurements of the cosmic-ray charges. Additional details are in the
following sub-sections.

3.1 Track Reconstruction

Event tracks are reconstructed when signals in six consecutive layers in the CAL have a signal
above a threshold. The positions of the scintillating fibers with the maximum ADC signal in each
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Figure 1: Schematics of the ISS-CREAM instrument, composed of the SCD, carbon targets, TCD/BCD,
CAL, and BSD [8].

layer are used for track reconstruction in the x-z and y-z planes. The initial hit positions of cosmic-
ray particles in each detector are extrapolated from the reconstructed track. Using Monte-Carlo
(MC) simulated data, the hit position resolution can be found by comparing the reconstruction to
the actual hit position. Those hit positions are well matched as shown in Fig. 2.

3.2 Charge Determination

The incident cosmic-ray particle hit location is found by backtracking the reconstructed track
to the SCD. Because of tracking uncertainties due to the long lever arm from the CAL, we use the
maximum ADC signal in an 11.1 cm × 11.5 cm area centered at the extrapolated CAL track. A
path length correction is applied to what because deposited energies in detectors depend on the path
length of cosmic-ray particles. The first SCD layer (SCD1) signals are used for charge identification
in this analysis. The charge distribution from carbon to iron is shown in Fig. 3. Individual elements
are separated with a resolution of 0.25e for carbon and 0.26e for oxygen. Heavy nuclei events were
selected in ranges based on the SCD signals. For charge Z, particles measured with Z ± 0.5 are
selected.

3.3 Energy Deconvolution

Due to the finite energy resolution of the CAL, cosmic-rays with the same incident energy can
deposit different energies in the detector; therefore, an energy correction must be applied to each
deposited energy bin. The distribution measured by the CAL is deconvolved into an incident energy
distribution by using response matrices [9]. The relation between incident energy and deposited
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Figure 2: Scatter plots of real hit positions and reconstructed hit positions at SCD1. Reconstructed hit
positions are well matched with real hit positions in both the x and y axes.

Figure 3: The charge distribution for carbon to iron nuclei measured with the ISS-CREAM SCD1. The rela-
tive abundance in this plot does not have physical significance as corrections for interactions and propagation
have not been applied.

energy is described using the equation below

Ninc,i =
∑
j

Pi, jNdep, j, (1)

where Ndep, j is the number of events in deposited energy bin j, Pi, j is the probability that events
in deposited energy bin j are from incident energy bin i. Ninc,i is the number of events in incident
energy bin i. The Pi, j can be described using the response matrices as shown in Fig. 4. Carbon and
oxygen Geant4 MC simulation data with the QGSP_BIC physics list have been used to make the
matrices. The number of events in each incident bin follows a power-law. The deposited energies
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Figure 4: Response matrices for carbon (a) and oxygen (b) calculated from MC simulation data. The
deposited energy distribution for each incident energy bin is generated by MC simulations.

of carbon and oxygen nuclei in the ISS-CREAM flight data range from ∼0.1 to ∼100 GeV/n. The
response matrices are generated to cover an energy deposit range of ∼0.01 to ∼1000 GeV/n that
allows at least an order of magnitude margin to void any edge effect in the deconvolution process.
Variations between MC models are currently being investigated.

4. Results

Each cosmic-ray events estimated charge number Z is determined from the SCD1 charge
distribution. The mean deposited energies in the CAL from incident energies for protons determine
the incident energies in this paper [10]. The differential energy spectra of each element are found
by dividing the number of events in each energy bin by the bin size. The differential spectra
from carbon to iron are shown in Fig. 5 All nuclei spectra show power-law like distributions.
Note that corrections for efficiencies have not yet been applied. Efficiencies for the trigger, track
reconstruction, and event selections are in the process of being estimated.

5. Conclusion

The ISS-CREAM instrument was launched successfully and recorded data for 539 days from
August 22, 2017, to February 25, 2019. Analysis of cosmic-ray heavy nuclei from carbon to iron
is reported in this paper. In the future, an energy deconvolution method will be applied to consider
the energy resolution of the CAL. To improve the charge determination accuracy, the consistency of
charge values between the top two layers of the SCD will be compared. The measured differential
spectra will be corrected for geometry factors, live time, and efficiencies to get the absolute fluxes.
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Figure 5: The differential spectra of heavy nuclei from carbon to iron: red circle, carbon; green square,
oxygen; blue triangle, neon; brown inverted triangle, magnesium; pink diamond, silicon; and sky-blue cross,
iron. The error bars include only statistical errors.
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