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The Payload for Ultrahigh Energy Observations (PUEO) is a NASA Long-Duration Balloon
Mission that has been selected for concept development. PUEO has unprecedented sensitivity
to ultra-high energy neutrinos above 1018 eV. PUEO will be sensitive to both Askaryan emission
from neutrino-induced cascades in Antarctic ice and geomagnetic emission from upward-going air
showers that are a result of tau neutrino interactions. PUEO is also especially well-suited for point
source and transient searches. Compared to its predecessor ANITA, PUEO achieves better than
an order-of-magnitude improvement in sensitivity and lowers the energy threshold for detection,
by implementing a coherent phased array trigger, adding more channels, optimizing the detection
bandwidth, and implementing real-time filtering. Here we discuss the science reach and plans for
PUEO, leading up to a 2024 launch.

37th International Cosmic Ray Conference (ICRC2021),
12-23 July 2021
Berlin, Germany - Online
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1. Introduction

The Payload for Ultrahigh Energy Observations (PUEO) is a NASA Long-Duration Balloon
Mission that has been selected for concept development through NASA’s Astrophysics Pioneers
program, and will launch in December 2024 from McMurdo Station in Antarctica. PUEO will be
sensitive to both Askaryan emission from neutrino-induced cascades in Antarctic ice and geomag-
netic emission from upward-going air showers that are a result of tau neutrino interactions, and will
have unprecedented sensitivity to ultra-high energy neutrinos above 1018 eV. For a more detailed
discussion of the PUEO mission, please see Reference [1].

2. Science Case

17
10

18
10

19
10

20
10 2110

 E [eV]

20−10

19−10

18−10

17−10

16−10

15−10

]
-1

 s
-1

 s
r

-2
 d

t 
[c

m
Ω

 E
 d

N
/d

E
 d

A
 d

IceCube 2018

Auger 2019

ANITA I-IV

PUEO (30d SES)
PUEO (100d SES)

IceCube flux

Target astrophysical models

FSRQ (Righi 2020)

Pulsars (Fang 2014)

Blazars (Rodrigues 2020)

GRB blast-wave (Razzaque 2015)

Target cosmogenic models

Allowed by local UHECR

TA best-fit (m=3)

Non-local protons

max
Non-local protons, high E

Figure 1: The PUEO single-event sensitivity (SES) to dif-
fuse UHE fluxes, compared to existing limits [2–4] and
some cosmogenic models [5–7] and astrophysical models
[8–12]. TheANITA I-IV SES is shown for comparison. The
non-local proton models were generated using CRPropa3 in
a manner similar to [5] but with I > 0.1. For diffuse
fluxes, the Askaryan sensitivity dominates, although the g
EAS channel also contributes significantly below a few EeV.
From Reference [1].

PUEO will have an unparalleled view
of the neutrino sky at extremely high
energies, and is uniquely suited to ob-
serve neutrinos from sources that accel-
erate particles to the highest possible en-
ergies [13]. Neutrinos travel virtually
unimpeded through the universe and carry
otherwise-unavailable information about
their origin, making them unique mes-
senger particles for cosmic sources. Un-
like cosmic rays, neutrinos are not de-
flected by magnetic fields along the jour-
ney from their source, and so can be
observed coincident in time and direc-
tion with photons or gravitational waves
from the same source. Observations from
all of the messengers (neutrinos, gamma
rays, cosmic rays, and gravitational waves)
can be combined into a complete multi-
messenger view of the high-energy uni-
verse as demonstrated by the ground-
breaking observations of the first candi-
date extra-galactic neutrino source, TXS
0506+056 [14, 15] and the first gravita-
tional wave source, the neutron star merger
GW170817 [16, 17].

In Figure 1, we compare the expected performance of PUEOwith models for the flux of diffuse
neutrinos, alongside current best constraints. Above about 1018 eV, theO(1M) km3 instantaneous ice
volume visible to balloon experiments combined with PUEO’s improved sensitivity over ANITA [2]
will lead to either the best constraints or a first detection in this regime. IceCube and Auger [3, 4]
have placed the most competitive constraints below 1019.5 eV so far. Compared to existing and
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Figure 2: The peak single-event sensitivity of the PUEO air shower and Askaryan channels to long (left) and
short (right) transients, such as NS-NS mergers ranging from 0.3 to 30 days in duration [18], high-luminosity
FSRQs lasting the entire flight [19] and short GRBs [20]. The long-duration sensitivity considers the mean
effective area of an optimal part of the sky over the entire flight while the burst sensitivity considers the
mean effective area over a ∼ 1000 s window. The shaded regions indicate possible sensitivities for different
locations on the sky bounded by the mean sensitivity across PUEO’s field of view and PUEO’s peak sky
sensitivity. Also shown are the fluence limits set by other experiments [21, 22]. From Reference [1].

proposed in-ice arrays, PUEO is unique in that it accesses the highest energies in the diffuse
neutrino spectrum, has the largest instantaneous effective area across the energy band, and can
uniquely measure the electron to tau ratio flavor ratio in the event of a detection.

Figure 3: A rendering of the PUEO payload, including a
design for the low-frequency (LF) drop-down instrument.

Neutrino interactions in the ice are ob-
servable with PUEO through the Askaryan
radiation signature. Tau neutrinos are ob-
servable by PUEO through an additional
channel wherein a tau neutrino interaction
in the Earth results in a tau lepton exit-
ing the ice and decaying in the air to pro-
duce observable radio emission. While
Figures 1 and 2 include the sensitivity of
PUEO to both channels, we find that the
tau neutrino signature via air showers dom-
inates PUEO’s effective area for energies
below 1018 eV.

PUEO will have a unique capability
to search for transient sources of neutri-
nos with the largest instantaneous effec-
tive area of any instrument. The large vis-
ible volume available to PUEO makes it
uniquely suited to detecting transients from sources with low flux in the few degrees near the hori-
zon of the payload. Figure 2 shows PUEO’s sensitivity to transient bursts of neutrinos from NS-NS
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Figure 4: The PUEO System Diagram.

mergers [18], flares of FSRQs [19], or short GRBs [20].

3. The PUEO Instrument

The PUEO payload will consist of a 216-channel Main Instrument (300-1200 MHz) and an
8-channel Low Frequency (LF) instrument, which will cover 50-300 MHz. The overall concept of
the PUEO payload is similar to that of ANITA. Much of the mechanical and Radio-Frequency (RF)
design, the power systems, attitude and location systems, and data storage and transfer is inherited
from ANITA. However, PUEO represents a significant improvement in sensitivity compared to the
ANITA payload. This is achieved by: 1) An interferometric phased array trigger, which lowers
the trigger threshold, and increases the expected neutrino and cosmic-ray event rate. 2) More
than doubling the antenna collecting area above 300 MHz. This is enabled by increasing the
low-frequency cutoff of the antennas from 180 MHz for ANITA-IV to 300 MHz for PUEO, which
reduces the size of the antennas by a factor of two in area. 3) A drop-down dedicated LF instrument,
as well as a downward-canted 12-antenna drop-down horn antenna array. These will improve
PUEO’s sensitivity to air showers created by high energy particles over a wide range of elevation
angles. 4) Significantly improved ability to filter man-made noise in real-time at the trigger level. 5)
Significantly improved pointing resolution from a combination of better orientation measurements
and a larger physical vertical baseline. Improved elevation pointing resolution allows us to improve
analysis efficiency and reduce contamination from man-made backgrounds.

Figure 3 shows a rendering of the PUEO payload, and Figure 4 shows the PUEO system
diagram. PUEO receives radio signals from cosmic particles using its 108 dual-polarized quad-
ridged horn antennas in the Main Instrument, and 8 antennas in the LF instrument. Radio signals
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observed by these antennas are amplified and filtered, and then sent via radio frequency over fiber
optic (RFoF) to a central digitizing and triggering system crate, where they are digitized at base-
band above the Nyquist frequency, and a trigger decision is made in real time to determine which
data are saved to disk. All 224 RF channels in the combined Main Instrument and LF instrument
are connected to the digitizing and triggering system crate, consisting of twenty-eight 8-channel
Sampling Unit for RF (SURF) boards and a master trigger and data collection unit termed the
Trigger Unit for RF (TURF).
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Figure 5: A simulation of the 16-antenna PUEO
delay-and-sum trigger shows a 50% threshold at a volt-
age signal-to-noise ratio (SNR) of 0.8 as viewed in a
single vertically-polarized antenna. Also shown are
the performance of the ANITA-IV combinatoric trig-
ger and ARA’s coherent trigger system [23].

We will use an interferometric phased ar-
ray trigger for the main instrument of PUEO
via delay-and-sum beamforming. This tech-
nology has been pioneered through the work
of multiple groups in PUEO, and has success-
fully been demonstrated in situ at the South Pole
on the Askaryan Radio Array (ARA) experi-
ment [23], achieving the lowest demonstrated
trigger threshold in any radio detector for cos-
mic neutrinos. The phased array trigger co-
herently sums the full radio waveforms with
time delays corresponding to a range of angles
of incident plane waves, averaging down the
uncorrelated thermal noise from each antenna
while maintaining the same signal strength for
real plane-wave signals (such as neutrinos).

The interferometric trigger also provides
improved rejection of man-made RF interfer-
ence, which tends to come from localized di-
rections. At any given time, we can mask from the trigger the beams that correspond to directions
where there is man-made interference, which further improves detector performance.

4. Calibration of PUEO

Ground calibration stations that will send ground-to-payload signals during flight will be
established near the launch site at the Long Duration Balloon facility and in remote locations in
Antarctica, as they were during previous ANITA flights.

We will also hand-launch a set of small secondary calibration payloads called HiCal-3, which
is modeled after previous HiCal payloads [24] that were used with ANITA. HiCal-3 will comprise
a set of three payloads, with extended capabilities for pulsing, capturing, and storing data relative
to previous flights. HiCal-3 flies in tandem with PUEO, broadcasting calibration signals at regular
intervals that are received directly and also reflected from the surface of the continent. The primary
HiCal-3 payload will be solar-powered, have a low-throughput satellite link, local disk storage,
and on-board signal generation and digitization capabilities. It will include a set of dual-polarized,
wide-band antennas and a high-voltage commercial pulser, to produce sharp impulsive signals. Also
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on board will be an RFSoC ADC/DAC, to provide the capability to produce arbitrary waveform
radio signals and to timestamp and digitize signals from a local receiving antenna.
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