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Tau neutrinos interacting in the Earth can result in upgoing extensive air showers. These showers
produce optical and radio emission that can be detected by orbital and suborbital platforms.
We present results of radio emission simulations using ZHAireS for observation from low-Earth
orbit as part of NASA’s nuSpaceSim program to develop a comprehensive end-to-end simulation
package to model these signals. Peculiar properties of the radio emission arise from the fact
that these showers develop in extremely rarified portions of the Earth’s atmosphere and, being
observed from hundreds of kilometers distance, have distinct coherent emission features compared
to ground observations.
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1. Introduction

Observing neutrinos above IceCube’s most energetic event to date (.10 PeV) [1] will require
detectors with increasingly large exposures. At the highest energies, & 1019 eV, observation from
the ground, although effective given the decade-scale lifetimes available, is ultimately limited by
the large areas of detector arrays needed motivating suborbital [2–4] and orbital [5] observatories.
NuSpaceSim [6] is a NASA-funded effort to estimate the sensitivity of optical and radio observato-
ries in low-Earth orbit (LEO) to upgoing extensive air showers (EAS). These proceedings report on
simulations of radio emission from upgoing EAS observed at LEO using the ZHAireS [7] software
package.

2. ZHAireS Simulations

The ZHAireS simulation [7] package integrates the ZHS radio emission modeling in the
frequency [8] and time domain [9] with the AIRES [10] extensive air shower simulations. This
simulation package has been used for ground-based observatories, such as the Owens Valley Radio
Observatory Long Wavelength Array [11] among other applications, and has been adapted to
simulate upgoing air showers for the analysis of the ANITA air shower tau neutrino channel [12] at
∼37 km altitude and the BEACON high-elevation observatory concept [13] at 1-4 km altitudes. In
this work, we apply the ZHAireS simulation package to provide predictions of the radio emission
from upgoing extensive air showers for an observatory at the low-Earth orbit altitude of 525 km
(Figure 1).

The setup for these simulations uses a single instance of a 1018 eV g-lepton electromagnetic
decay (g− → ag+ā4+4−)with 99%of the energy going to the electron. The decaywas simulatedwith
TAUOLA [14]. Following the approach of the ANITA simulations [12], the energy and momenta
of each of the decay-product particles are injected into ZHAireS to initiate shower simulations
with zenith angles of 55◦ − 85◦ (in steps of 5◦), 87◦, and 89◦, at altitudes of 0 − 9 km in steps of
1 km. The electric field calculation in ZHAireS uses the ZHS algorithm in the time-domain [9]
with 0.3 ns time bins. This temporal sampling corresponds to a bandwidth of 1.6 GHz. Examples
of pulses produced by these simulations are shown in Figure 2. The electric field pulse peaks at the
Cherenkov angle and is reduced in amplitude and bandwidth away from it. The view angle \view

(Figure 1) sampling varies for each simulation geometry but is roughly ∼ 0.1◦ steps ranging from
0◦ − 3◦. In Figure 3 we show the beam pattern cuts of the geomagnetic radio emission for 50 MHz
sub-bands in the 50-1000 MHz band. The general behavior is that the beam pattern is wider at low
frequencies and narrows with decreasing peak amplitude at the Cherenkov angle with increasing
frequency.

The geomagnetic field vector for each of these showers was set at a strength of 65 `T in a
direction orthogonal to the axis of propagation. When these results are implemented in a look-up
table for simulations, the peak electric field strength scales as sinU, where U is the angle between
the geomagnetic field. However, as will be shown in the next section, this relation breaks down for
showers initiated at high altitudes where the atmosphere is significantly more rarified compared to
showers that initiate closer to sea level.
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Figure 1: Simulation geometry. An upgoing tau
exits the Earth at zenith angle \I and decays at
an altitude ℎ above sea level. The radio emission
is modeled for variety of view angles \view for a
receiver at 525 km altitude.
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Figure 2: Example electric fields for an 87◦ zenith
angle upgoing extensive air shower from a tau de-
cay at ground altitude observed at 525 km. The
Cherenkov angle is at ∼ 1.4◦ for this geometry.
The waveforms shown are unfiltered.
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Figure 3: Example radio emission profiles for an 87◦ zenith angle upgoing extensive air shower from a tau
decay at ground altitude observed at 525 km.

3. Results

3.1 Shower Characteristics

A subset of the results that will be implemented in an initial version of nuSpaceSim are shown
in Figure 4. We have taken two bands: 30-300 MHz also known as the very-high frequency (VHF)
band and 300-1000 MHz, which is part of the ultra-high frequency (UHF) band. While we do have
full flexibility to choose bands based on the ZHAireS outputs, we start with these delimitations
because they correspond to bands used in radio-frequency engineering and each has a corresponding
set of technological developments that would be applied to a future implementation.

In the UHF band, there is a clearly defined Cherenkov angle at 80◦ zenith angles with the
peak view angle shifting to lower values as the decay altitude increases. This effect is due to the
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Figure 4: Radio emission profiles upgoing extensive air shower from a tau decay at ground altitude observed
at 525 km. Top left is for a shower zenith angle of 89◦ in the 30-300 MHz band while top right is for the
same zenith angle in the 300-1000 MHz band. The bottom left and right at for a shower zenith angle of 80◦

in the 30-300 MHz band (bottom left) and 300-1000 MHz band (bottom right).

decreasing atmospheric density over the shower development with increasing decay altitude. At a
zenith angle of 89◦ the simulations show also indicate a trend of decreasing Cherenkov angle with
decay altitude although it is more drastic than at 80◦. This effect is unexpected since the shower
should, in principle, evolve over a denser atmospheric profile at a zenith angle of 89◦ than at 80◦.
The root cause of this difference, whether physical (which seems unlikely) or due to the limitations
of the ZHAireS simulations, is currently under investigation.

3.2 Saturation of Geomagnetic Radiation

One of the novel features found in these simulations is the saturation of geomagnetic radio
emission for high altitude upgoing air showers. In Figure 5 we show the dependence of the peak
electric field emission as a function of geomagnetic field inclination angle ��. As mentioned above,
the simulations for the previous sections all had the geomagnetic field orthogonal to the shower
axis of propagation (i.e. �� = \I − 90◦). It is found that for showers initiated at high altitudes and
steeply upgoing zenith angles, the geomagnetic field saturates above a value of |� sinU | that varies
for each shower zenith angle and decay altitude. This is a deviation from the conventional � sinU
dependence on the radio emission strength known from ground-based observations.

We suspect this effect is due to a balance between the geomagnetic deflection of the electrons
and positrons in the shower and multiple scattering interaction length. The left panels of Figure 5
show that for a steeply upgoing shower (\I = 50◦) the saturation effect becomes stronger for showers
with increasing altitude. The right panels of Figure 5 show that for a shower with a more horizontal
zenith angle (\I = 87◦), the saturation effect is not noticeable and the emission follows the expected
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Figure 5: Geomagnetic field angle dependence on radio emission. Top left: the peak electric field value as
a function of geomagnetic field inclination angle �� for a 50◦ zenith angle shower. The colors indicate the
decay altitude of each shower. Bottom left: the trends in the plot above have been fitted to a clipped sine wave
and normalized by the peak amplitude of the fitted sinusoid and plotted in terms of the angle between the
geomagnetic field vector and the shower axis (U) to illustrate the effect of the geomagnetic emission clipping
fraction. Right top and bottom are the same as the left top and bottom, respectively, but for a shower zenith
angle of 87◦.

� sinU dependence. The steeply upgoing shower will evolve into increasingly more rarified media
in which the electrons and positrons can be deflected significantly away from the Cherenkov angle
at the track level significantly suppressing the net radio emission.

4. Discussion & Outlook

The results from these air showers are being used to produce look-up tables to be implemented
for radio observatory simulations with nuSpaceSim. The radio emission is scaled with the shower
energy, following the approach used for ANITA and BEACON, where it was shown that this
approximation does not result in significant deviations [12].

We are finding that the behavior for high altitude showers at 89◦ zenith angle is not producing
high frequency emission while high-altitude showers at 80◦ do contain high frequency emission.
This is indicating a potential systematic error at high zenith angles which is possibly associated
with the atmospheric index of refraction model implemented in ZHAireS. The results reported here,
particularly at the highest zenith angles, should be taken as preliminary while this behavior is under
investigation.
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The finding that the emission saturates for steeply upgoing showers at high decay altitudes
will also be further investigated. The hypothesis that this is due to an increased multiple scattering
interaction length of electrons and positrons in the shower compared to the geomagnetic deflection
dominating can be tested in more detail using ZHAireS or simplified versions of the particle
propagation simulations. This will have implications for the energy reconstruction of steeply
upgoing air showers from future space-based observatories.

5. Conclusions

In these proceedings we have presented the first results of radio emission from detailed track-
level upgoing air shower simulations as observed from low-Earth altitude. While the results share
many similar features with regards to the radio emission beam pattern from similar simulations
at lower altitudes for ANITA and BEACON, there is an as-of-yet unexplained behavior for nearly
horizontal showers which is currently under investigation and these results should be taken as
preliminary. The main new finding from this exercise is the saturation of geomagnetic radio
emission for steep upgoing shower initiated at high altitude.
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