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Nowadays the implementation of artificial neural networks in high-energy physics has obtained
excellent results on improving signal detection. In this work we propose to use neural networks
(NNs) for event discrimination in HAWC. This observatory is a water Cherenkov gamma-ray
detector that in recent years has implemented algorithms to identify horizontal muon tracks.
However, these algorithms are not very efficient. In this work we describe the implementation
of three NNs: two based on image classification and one based on object detection. Using these
algorithms we obtain an increase in the number of identified tracks. The results of this study could
be used in the future to improve the performance of the Earth-skimming technique for the indirect
measurement of neutrinos with HAWC.
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1. Earth-skimming neutrino detection with HAWC

The HAWC observatory consists of a large 22,000 <2 area densely covered with 300 water
Cherenkov detectors (WCDs) [1]. This laboratory is an instrument sensitive to hadron and gamma
ray air showers in the TeV energy regime, and it has been in operation since 2015. HAWC has a 2BA
instantaneous field of view between declinations X ∈ [-26°,+64°], covering 2/3 of the sky every 24
hours [2]. Nowadays there is an alternative line of research that proposes to use this observatory as
an indirect neutrino detector [3, 4]. This idea is based on the Earth-skimming technique, here we
want to get an interaction between a neutrino and a nucleon in a high mass target by exchanging
a ,± boson, the result of this interaction produces a charged lepton with the same flavor of the
incoming neutrino. HAWC is located at an altitude of 4100 m a.s.l. in the vicinity of the mountain
Pico de Orizaba in Mexico, this mountain is used as target to produce the neutrino-nucleon reaction.
The tau leptons produced by a neutrino in this type of interaction are the most likely to be detected
in any of the HAWC detectors. It should be noted that the muons generated in an air shower in the
same direction of the Pico de Orizaba represent the main source of noise for this neutrino signals.
One of the characteristics of these noise signals and neutrino signals is that they must activate a line
of detectors from the HAWC observatory; furthermore, their trajectory must be quasi horizontal
because they passed through of the Mountain. For this reason, we are going to refer to this type of
signals as "horizontal tracks". In [4] is described one of the method to detect horizontal tracks in
HAWC. The phases of this method is:

1. Triggering of candidate signals using the HAWC shower data.

2. Tracking algorithm.

3. Filtering of candidate tracks.

In the first two steps, most of the air shower events are eliminated; but the sample is still contaminated
with very inclined small showers. For this reason, a series of filters are applied in the last step. In
this work we propose to train a convolutional neural network (CNN) to replace these filters, with
this change we analyze the possibility of increasing the number of identified tracks.

1.1 CNN: Image classification

Image classification is one of the most common applications for a CNN. In high energy
physics there is a great variety of uses for this application. For example, the NEXT [5] experiment
used a CNN for the identification of electron-positron pair production events, which exhibit a
topology similar to that of a neutrinoless double-beta decay event. Also in [6] present CNN for
signal/background discrimination for classification based on simulated data from the Ice Cube
neutrino observatory and an ATLAS-like detector. So in this work we use a CNN to classify
horizontal tracks events and air shower events. Figure 1 shows a visual comparison between these
two events. The small circles represent the photomultipliers (PMTs) in each tank. The color in the
PMTs represent the activation time in the event and the size symbolize the charge detected. The
events are more easy to recognize using an image (figure 1) because their shape is different. Thus,
we analyze the possibility of applying a CNN for track discrimination.
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(a) Horizontal track. (b) Air Shower.

Figure 1: Visual comparison between a horizontal track and an air shower.

1.1.1 Network architecture

We use the convolutional network model VGG16, which is a pre-trained network with 13
convolutional layers and 3 fully connected layers. VGG16 is a convolutional neural network model
proposed by K. Simonyan and A. Zisserman in the paper [7]. The model achieves 92.7 % top-5 test
accuracy in ImageNet, which is a dataset of over 14 million images belonging to 1000 classes. For
this work, the network output is a real number between zero and one. If the value is closer to zero,
then it is more likely to be a track.

1.1.2 Dataset

The selection of the data used in training and testing stage is described following:

1. We use the candidates given by the Tracking algorithm described in [4].

2. We apply a selection cut to the possible tracks given by the previous step. With this cut, we
take the candidates with beta values (V = E/2) between 0.5 and 1.5. We choose this range
because we are looking for signals with a speeds close to the light that spread in a straight
line. To calculate the speed, we use the average length and the central PMT time between the
first and the last tank that was activated in the event.

3. Finally, we generate the images of the events that we obtained in the previous step.

We tested 2 different models of CNN focused on image classification. Both models used the same
network architecture, but different training images. We named model A to the network in which
we use the normal image given by the official HAWC display (an example is shown in figure 1 a).
On the other hand for model B we remove from the image the PMTs that were not activated, an
example for this event is shown in the figure 2. As this model used a clearer imagen, we analyze
the improvement of this model with respect to model A. Finally, we hand-sort images of tracks and
air showers that passed the V filter to make the following training and test sets.
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Figure 2: Event display without tanks. This type of image was use in model B.

• Training dataset: We used 1050 tracks images and 5627 air shower images. Then, with this
dataset we made the training for the network. After that, we passed 8426 air shower images
to the trained model and all the false positives were added to the training data.

• Validation dataset: We used 116 tracks images and 116 air shower images. This set is used
to calculate the loss function and the success rate in each of the training steps.

• Test dataset: We used 100 tracks images and 1000 air shower images that passed the V filter.
The proportion of this set is like the number of tracks and air showers in the real data and we
use it to see the behavior of our networks when we will analyze real events.

Model A and B used the same number of horizontal tracks and air showers described in the training
and test data.

1.1.3 Results

To evaluate the model, we use the loss function and success rate. Loss function quantifies the
error between predicted and output values, and the success rate tells us the proportion of correctly
classified events. For both models, we calculate these variables in 50 training steps or epochs, the
results are shown in figure 3. In these plots, the blue line is for training data and the yellow line is
for test data; also the dotted line is for model A and the solid line is for model B. The loss for the
training data is decreasing in each training step, however for test data the loss begins to increase
from the 22th epoch. This is a clear sign that the network is specializing in training data (we have
overfitting). For this reason, we use the both trained model until the step 20. On the other hand,
the success rate for the test images was around 70% for both models. We have a relatively low
percentage of this variable because the network just identifies correctly one fifth of the horizontal
tracks images. However, both models correctly classify almost all the air showers images. However,
for this work an event classified as a track was taken as positive and an event classified as an air
shower was negative, so taking this into account, we also use the following variables to test the
models:

• Precision Proportion of positive identifications that was correct. In our case, it indicates the
proportion of tracks classified correctly.

• Recall: Proportion of all positive identifications that was correct.
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(a) Loss function. (b) Success rate

Figure 3: Loss and success rate for both models A and B.

In figure 4 we show a precision vs recall plot for model A and model B to analyze the percentage
of tracks identified by the network that were correct. This plot was made for different threshold
values and using the second test dataset. Remember that the output of the network is a real number
between zero and one. So the threshold value is the number from which we consider that an event is
positive or negative. We want to avoid the highest rate of false positives, for this reason we chose the
threshold value that obtained the highest percentage of precision. Here the best value was obtained
at threshold 0.1 for both models. In this case, any value given by the network less or equal to 0.1
was considered as a track.

(a) Model A. (b) Model B.

Figure 4: Precision vs recall for both models.

1.2 CNN: Object Detection

Object detection is a task based on image classification. Systems not only need to identify
which category the input image belongs to, but also need to mark it with a bounding box. In the
following sections we describe our implementation of object detection network for track finding.
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1.2.1 Network architecture

The API (Application Programming Interface) is a framework open-source code built on
TensorFlow that facilitates the construction, training and implementation of object detection mod-
els. In this interface there are a collection of detection models pre-trained on the COCO 2017
dataset, which are referred as a model zoo [8]. In this work, we use one of these models, the
faster_rcnn_resnet101_coco. This network has a speed of 106 ms and a mean average precision
(mAP) of 32 [9].

1.2.2 Dataset

For training data, we used 2866 tracks images and 2860 air shower images. The tracks images
were obtained from simulations of horizontal muons with an energy of 100 GeV, and the air showers
images were selected from the training data of model A. Also, we added one file for each image
that containing the position of the vertices of the rectangle that enclosed the object that we wanted
to detect. For test data, we use the same images as in the previous network (model A).

1.2.3 Results

The output for this type of network is an image with a region containing the detected object.
An example is shown in figure 5. In this figure, the blue box indicates an air shower detection, and
the green box indicates a track detection. In addition, each of these rectangles contains a reliability
percentage. If we have a high percentage, then the detection and classification of the object is more
likely to be correct. We use a 99% of this percentage to avoid false positives.

Figure 5: Output image for the CNN focused on object detection.

On the other hand, the loss function for this network is shown in the figure 6. The value of this
function decreases with increasing training steps. The clearest line is the cost value, and we get
the highlighted line after applying a smoothing function to these values. This function is called an
exponential moving average and we use it to get a better visualization of the loss.

2. Model Comparison

After analyzing the test dataset, in table 1, we show the threshold value or reliability percentage
for which we obtained the highest value for precision variable. In this case, the network focused on
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Figure 6: Loss function for the CNN focused on object detection.

object detection and model A obtained the highest value for precision, and these did not have any
false positives. On the other hand, model B identified a greater number of tracks, since it obtained
the highest value for recall.

Model Threshold
%

Precision Recall False positives
A 0.1 100 11 0
B 0.1 91 22 0.2

Object detection 99 % 100 11 0

Table 1: Threshold value with greater precision for the three models.

Using these threshold values, we analyze a real data set. This set consists of 118476 candidates
given by the tracking algorithm. First, we apply the V selection cut to these candidates and we had a
total of 10668 events as a result. Then, we identify horizontal tracks in these events using our neural
networks, the results are shown in table 2. This table also shows the number of tracks identified by

Model Tracks identified False positives
A 103 3
B 125 5

Object detection 92 0
Filtering of candidate tracks 9 0

Table 2: Comparison of tracks identified by all models for the same set of real data.

the third step of the algorithm mentioned in [4]. All our neural networks had an increase of an order
of magnitude in the number of tracks identified compared to the previous algorithm. Also model
B had the highest number of tracks identified, so in this case using a cleaner image improves the
detection process, but it had the highest number of false positives. However, the object detection
network did not have false positives.
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3. Summary

We proposed a modification to the algorithm mentioned in [4]. This modification consisted
on using convolutional neural networks. We obtained preliminary results that indicate an increase
in the number of tracks identified. Here, we could see that a model with a clearer image obtains
the highest number of detections, however, the network specialized in object detection does not
have false positives. This is a great advantage because no other algorithm would be necessary to
eliminate this contamination of events caused by false positives.
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