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KM3NeT/ORCA is a water-Cherenkov neutrino detector, currently under construction in the
Mediterranean Sea at a depth of 2450 meters. The project’s main goal is the determination
of the neutrino mass hierarchy by measuring the energy- and zenith-angle-resolved oscillation
probabilities of atmospheric neutrinos traversing the Earth. Additionally, the detector observes a
large amount of atmospheric muons, which can be used to study extensive air showers generated
by cosmic ray particles.

This work describes a deep-learning based reconstruction of atmospheric muons using graph
convolutional networks. They are used to reconstruct the zenith angle, the muon multiplicity and
the diameter of atmospheric muon bundles. Simulations and measured data from an early four
line stage of the detector are used to evaluate the performance. Furthermore, the reconstructions
are compared to the ones of classical approaches, and use cases for the indirect study of cosmic
ray particles are shown.
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1. Atmospheric muons in KM3NeT/ORCA

ORCA is part of the neutrino detector network KM3NeT [1], which consists of two wa-
ter Cherenkov detectors currently under construction in the Mediterranean sea, making use of
Cherenkov light emitted by fast charged particles in sea water. This light is measured by photomul-
tipliers (PMTs) which are housed in glass spheres (DOMs). Each DOM houses 31 PMTs, which
provide additional directional information of the measured photons. In total, ORCA will consist of
7 mega-tons of sea water, instrumented with a 3D-array of 2070 DOMs arranged on 115 strings.
For this analysis, simulations and data from the initial four-line stage of the detector is used.

ORCA’s primary goal is to study neutrino properties by detecting interactions of atmospheric
neutrinos in the GeV energy range. However, the overwhelming majority of recorded events are
actually atmospheric muons produced in cosmic ray induced air showers, which usually pose as a
background for neutrino measurements. But they provide a wide range of applications as well, like
a validation of the detector performance or measuring the cosmic ray composition. Due to the high
rates at which they are detected, the available statistics are much larger than those for neutrinos.

Reconstructing the properties of atmospheric muons can prove challenging. Especially if
there are multiple muons crossing the detector at the same time (muon bundles), the signature left
behind in the detector can be very complex. Deep Learning methods can drastically simplify the
process of analysing these signatures by providing a universal and simple way of reconstructing any
observable. Since the data recorded by KM3NeT closely resembles point clouds, Graph Neural
networks are a natural choice for the architecture.

2. Graph neural networks

For each hit in an event, KM3NeT records a set of coordinates that describe the position and
time of where and when the corresponding photon was detected. Among these coordinates are the
time, the XYZ-position of the PMT that recorded a hit, as well as the pointing direction of the PMT.
In the input to the graph network, these coordinates are the node features [2] of a directional graph,
each hit being represented by a single node. The orientation of the PMT is encoded as the three
components of a Cartesian unit vector, resulting in seven-dimensional node features.

The edge features of the graph are computed dynamically as part of the network. These dynamic
re-computations can play a similar role as the pooling layers in image convolutional networks, since
they allow the network to move distant nodes closer together, or vice versa. The architecture of the
graph network used in this work resembles the ParticleNet model proposed by Qu et al. [3]. It
consists out of three Edge Convolutional blocks, followed by a global pooling layer and two fully
connected layers. A custom open-source implementation for this architecture was developed using
the tensorflow [4] back end®.

3. Reconstructions

This section describes the reconstruction of the zenith angle, the multiplicity and the diameter
of atmospheric muon bundles, each with its own neural network. A large amount of labelled data is

1See https://github.com/StefReck/MEdgeConv.
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needed to train the networks. For this, a set of 25 million atmospheric muon events was simulated
using the software package MUPAGE [5] for the four-line set-up of the ORCA detector. It uses
parametric formulas to model the dependence of the flux on e.g. the energy, multiplicity and zenith.
All of these events pass at least one of the trigger algorithms described in Ref. [1] and [6]. To
combat overfitting, the data is split threefold into 19 million events for training, 1 million events
for validating during the training, and 5 million events for generating the plots shown in this work.
The training is conducted using the ADAM [7] optimizer and a learning rate of 0.001, which is
gradually and exponentially reduced by a factor of 100 over the course of the training. The model
takes five days on a GTX 1080ti GPU to fully converge, and requires 2 GB (peak) of VRAM with
a batchsize of 64.

3.1 Zenith angle

The goal is to reconstruct the zenith angle of an incident muon or muon bundle. In general, the
different muons in a muon bundle have slightly different zenith angles. Since these deviations are
usually too small to be resolved, the muons are assumed to be parallel in the MUPAGE simulations,
and therefore also in this work. The network reconstructs the incident direction as the components of
a three-dimensional unit vector, from which the zenith angle can be computed afterwards. In order
to also have access to an estimator for the error of the reconstruction, a probability distribution
for each component of the vector is used as the output of the network (see section section 4).
The outputs are chosen to be three independent normal distributions (u, o-), ignoring potential
correlations between the components in order to simplify the task.

Figure 1 shows the zenith angle reconstruction performance in comparison to a classical
maximum-likelihood based algorithm for single tracks described in [1]. Deep Learning provides a
comparable precision on average atmospheric muon events, but shows a substantial improvement
for the rarer multi muon events, which make up about a fifth of the dataset. Since the classical
method used here was not optimized or intended for atmospheric muon bundles, Deep Learning
has an advantage on these events.

In Figure 2, a data-MC comparison of the reconstructed zenith angle of single muon events
for both the classical and the deep learning approach is shown. The agreement between the two
algorithms is excellent, both on data and simulations. The deviation from one in the data-MC ratio
is visible for both approaches, and can be used to tune the simulations in the future.

3.2 Muon multiplicity

The number of muons in an event is an important observable for indirectly studying cosmic
rays. This deep learning approach is the first reconstruction of the muon multiplicity in KM3NeT.
The muon multiplicity is defined here as the number of "reconstructable" atmospheric muons in
an event. In order for a muon to qualify as reconstructable, it needs to produce at least 5 hits in
the detector. Despite the discrete nature of the multiplicity, the output of the network is set to
be a continuous log-normal distribution with a fixed width (sigma) of one. Even though this is a
suboptimal posterior, this approach still provides a good estimator for the muon multiplicity (see
Figure 3).

The muon multiplicity can be used for the identification of primary particles. Figure 4 shows
the result of applying the trained network on 250,000 atmospheric muon events simulated with
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Figure 1: Absolute difference between reconstructed and true zenith angle plotted over the true zenith angle
for selected atmospheric muons in ORCA4. Shown are the median and the 68% band for the classical
reco (orange) and the deep learning reco (blue). Since it was trained on the expected distribution, the deep
learning reconstruction is biased for true cosine zeniths below 0.5, leading to an increase in the error. Most
atmospheric muons are not in that region. Deep learning provides a slight improvement in the median for all
events (left), which is mostly due to events with two or more muons (right).
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Figure 2: Data-MC comparison of the reconstructed zenith angle for the classical approach (orange) and
deep learning (blue). A cut is used on the classical reconstruction quality in order to remove noise and
multi-muon events. Each curve is normalized to have an integral of 1, so only the shapes are compared in

this plot.
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Figure 3: Reconstructed versus true muon multiplicity. The multiplicity is in general correlated to the
number of hits, since more muons produce more light on average. The plot only shows events with a
comparable number of hits (between 500 and 600). Even in this particularly difficult case, the reconstruction
is meaningful.

Corsika [8] SIBYLL 2.3c [9] using the GST-3 [10] spectrum. Despite being in an early stage
of construction, the detector already provides a decent separation power between iron and proton
induced events.

3.3 Bundle diameter

When multiple muons travel through the detector at the same time, a characteristic observable
of the bundle is the lateral spread of the muons. Higher energetic primary particles tend to produce
bundles with a larger diameter. For the first time in KM3NeT, a reconstruction for the diameter
of muon bundles was developed. The muon bundle diameter is here defined as the maximum
perpendicular distance between any pair of reconstructable muons in the bundle at the height of the
detector.

The output of the network is set to be a log-normal distribution, which is implemented for
the sake of simplicity as a normal distribution on the log-transformed bundle diameter. Figure 5
shows the performance of the reconstruction. Since the ORCA4 detector is still in an early stage
of construction and therefore quite small, events are often difficult to reconstruct, e.g. because the
muons are too far away from the instrumented volume of the detector. These events can be removed
with a cut on the reconstructed uncertainty (see section 4). Removing 50% of the total events with
2 or more muons provides a stable reconstruction performance over a large interval of diameters.
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Figure 4: Reconstructed (light) and true (dark) muon multiplicity rates for events generated in proton (blue)
and iron (orange) induced atmospheric showers.
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Figure 5: Performance of the bundle diameter reconstruction on events with 2 or more muons. Blue shows
all events, orange shows the best 50% of events according to the reconstructed uncertainty. Events with a high
uncertainty tend to get reconstructed at around 10 meters, since this is the maximum of the true distribution.
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Pull distribution for cosine zenith and bundle diameter
KM3NeT Preliminary, ORCA4 simulations
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Figure 6: Pull distribution (¢ — true) /o of the reconstructed cosine zenith angle (blue) and bundle diameter
(orange). The dashed black line is the ideal normal pull distribution.

4. Uncertainty reconstruction

Deep Learning can be used to provide an estimate of the uncertainty of the reconstruction for
each event. For this, the output of the network can be viewed as a probability distribution. For
example, the output could be a rational number u and a rational positive number o, which together
make up a normal distribution. The loss to minimize during training can then be set as the negative
log-likelihood of the true value given this distribution.

To check the quality of the uncertainty reconstruction, one can take a look at the pull distribution,
defined as (u — true)/o. This is shown in Figure 6 for the cosine zenith angle and bundle
diameter reconstructions shown in the previous sections. The distributions agree well with a
normal distribution for up to two sigma, indicating a correct uncertainty estimate in that range.

5. Conclusion

Graph neural networks have been successfully applied for reconstructing properties of atmo-
spheric muons on four lines of the KM3NeT/ORCA detector. They provide a zenith reconstruction
consistent to an established classical algorithm on both data and simulations for single-muon events.
Furthermore, they show improvements for multi-muon events, and allow for reconstructing new
observables like the muon multiplicity and the bundle diameter. This can be used for validating the
detector and indirectly studying the properties of cosmic ray particles.
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