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integrated in the IceCube Upgrade.
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1. From Upgrade to Gen2

The IceCube Neutrino Observatory is a cubic-kilometer neutrino detector constructed at the South
Pole [1]. Reconstruction of the incident neutrinos relies on the detection of Cherenkov photons
emitted by charged particles produced via neutrino interactions in the surrounding ice or bedrock.
The photons are collected by Digital Optical Modules (DOM), installed within holes drilled into the
ice. IceCube-Gen2, a planned expansion of IceCube, aims to increase the rate of observed cosmic
neutrinos tenfold compared to IceCube, and to be able to detect sources five times fainter.

1.1 Upgrade DOMs
The IceCube Upgrade [2], as a first step, will consist of nearly 700 new optical modules, as
an extension of IceCube to lower energies and a testbed for Gen2 modules. One design for
IceCubeUpgrade opticalmodules, themDOM(Figure 1), features 24 Photomultiplier Tubes (PMTs)
of 3" diameter, yielding an almost homogeneous angular coverage and providing an effective
photosensitive area more than twice that of the Gen1 IceCube DOMs. Another module for the
Upgrade is the D-Egg (Figure 2), which has two 8" PMTs facing opposing directions.

Figure 1: The multi-PMT Digital Optical Mod-
ule (mDOM).

Figure 2: The dual-PMT Optical Module (D-
Egg).

1.2 Gen2 Module Design
The Long Optical Module (LOM) is an evolution of the modules used in the IceCube Upgrade.
The sensor diameter has been minimized to enable the module to fit within a narrower hole, saving
time and fuel costs associated with hole-drilling. Multiple PMTs have been used to maximize
effective area per sensor while maintaining multi-directional sensitivity. The electronics have been
optimized for a reduced power consumption of 4W per module, and easier manufacture and testing.
With these goals in mind, the LOM will use new 4" diameter PMTs to obtain the same effective
area as the mDOM with fewer channels, reducing the power consumption due to digitization and
processing. The waveform processing has been shifted to the PMT base, integrating digitization
and high voltage (HV) generation and moving from a monolithic central processing architecture to
a modular framework. In addition, the vessel diameter has been limited to ≈12". For reference,
the Gen1 DOMs were 13" in diameter, while the mDOM is 14" wide, and we save up to 10% for
every inch reduction in hole diameter. This correlation breaks below a drill diameter of 30cm, and
therefore a design narrower than the one selected does not offer measurable benefits for drilling.
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Figure 3: The two prototype designs.

The pressure vessel designs are a major factor in the
size of theLOM, and the number of PMTswhich can fit.
Two designs are currently under development (Fig. 3),
with 18 and 16 PMTs. Simulation results yield an
effective area (400nm) of 118 cm2 for the 18-PMT
module, and 105 cm2 for the 16-PMT module, an in-
crease in Cherenkov-averaged effective area of 3.2-4.2
times the Gen-1 DOM using PMTs with 25% quantum
efficiency[3]. In the near term, the goal is to build ten
modules of each type, with a total of 12 R&D mod-
ules within the Upgrade deployments. These will be
further developed into a single design for Gen2, which
will have over 10000 modules distributed across 120
strings [4].

2. Mechanical Structure

The primary requirements for the mechanical support structure are to hold the PMTs in the correct
orientation, while absorbing the compressive shrinkage of the vessel. Notwithstanding the con-
straints on vessel diameter, a minimum clearance between components of 4-5mm is maintained,
requiring the support structure to push components radially outward away from each other. The
support structure design also dovetails closely with the potting procedure to interface the PMTs
with the vessel.

2.1 Optical Coupling of PMTs

Each PMT is coupled to the wall of the pressure vessel using transparent silicone gel. This could
be injected directly into the cavity between a ’shell’ and the vessel, to cure in place once installed.

Figure 4: Optical Gel. Figure 5: Gel Pads.

The mDOM uses a 3D printed sup-
port structure, with reflectors to de-
tect any photons incident off-axis.
For the LOM, an alternate approach
is taken, using gel pads moulded to
fit between the PMTs and the ves-
sels. Total Internal Reflection (TIR)
at the conical surface replaces the
opaque reflectors with comparable
efficiency. The gel pad must be stiff
enough to maintain shape while pli-
able enough to cushion forces with-
out damaging the PMT. GEANT
simulations are used to determine the
optimal shape for the gel pads [3].

A major obstacle in the gel pad approach is the occurrence of bubbles, which act as photon scatter-
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ing centres. These bubbles expand under vacuum, which is problematic as both module halves are
sealed using under-pressure. The optical gel is a two-part addition-curing silicone, requiring three
days to cure. The gel is first degassed to obviate the bubbles introduced during the mixing process,
a process referred to as primary degassing. The gel is then poured into a mould for gel pad casting,
directly onto the face of the PMT. Once cast, the PMT and its gel pad assembly must be coupled to
the vessel wall without any bubbles at the interface. Initial tests involved a layer of uncured gel at
the surface of the pad, which was then compressed against the vessel. The method failed for PMTs
angled to the vertical, as the liquid gel leaked out leaving air cavities behind.
An attempt to solve the issue in-
cluded casting a pad with a flat
surface, creating a cavity with the
curved pressure vessel. Silicone
caulk is used to seal the rim of
the pad to the pressure vessel, and
the cavity is then filled with liq-
uid gel. mDOM testing indicates
that the gel must be degassed after
pouring (secondary degassing), to
mitigate the risk of delamination at
low temperature and vacuum con-
ditions.

Figure 6: Cavity method.
Figure 7: Removal of bubbles
after secondary degassing.

Figure 8: A transparent gel ’shell’.

An alternative approach under consideration is the use of
transparent plastic shells, to be sealed inwith the PMTs. The
gel is poured into the shell to cure. The shell material must
be selected to match the coefficient of thermal expansion of
the gel, allowing it to shrink at low temperatures without
delaminating from the gel. It must also retain a high degree
of transparency, while being economical to manufacture at
large scale.

2.2 Support Structure
The support structure must be designed keeping
inmind the requirements of the PMT interfacing
procedure. In Figure 9, a structure welded to-
gether out of stainless steel sheets is shown. The
PMTs are aligned using plastic guide bearings,
with a foam collar. To exert the necessary out-
ward pressure for proper gel pad interfacing, an
inflatable bladder is proposed around the neck
of the PMT, which permits articulation during
assembly. These features combine to yield an
economical solution scalable for mass produc-
tion.

Figure 9: Faceted support structure, shown for the 16
PMT configuration.
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Figure 10: Tree Shaped Support,
shown for the 18 PMT configuration.

An alternative design is shown in Figures 10, where each PMT
is aligned with a flexible plastic collar, connected to a central
shaft. Springs are used to provide the required outward pressure.

3. Electronics
A prime motivation in using larger PMTs for the LOM is to
obtain a photon effective area comparable to the mDOM with
fewer channels, reducing power consumption. The electronics
design for the LOM builds upon the system used in the mDOM,
expanding the mDOM MicroBase, which regulates the PMT
HV generation, to include data acquisition (DAQ) functionality.
The new bases are referred to as the Waveform MicroBase.The
digitization and processing have thus been distributed to the base
of each PMT, moving to a modular design for ease of assembly
and manufacturing.

To maximise packing efficiency and board surface area while maintaining the necessary clearances
between components, each PMT base has a special shape to fit in the gaps between neighbouring
PMTs

3.1 Central Boards

Following the existing IceCube Upgrade mDOM and D-Egg designs, a central processing board
will provide common data management and control functions, as well as interfaces to the long in-ice
cable connection to "hub" surface computers (Fig. 11). These parts will match closely the mDOM
design described in Ref. [5], including an ARM microprocessor (STM32H743 MCU), the Ice
Communications Module ("ICM") with a dedicated FPGA, and DC-DC converters supplying logic
level power from the higher voltage supply on the in-ice cable. The ICM provides communication
and a precise common time base for the module, synchronized to the IceCube master clock. The
LOM has a fanout of communication between the central MCU and the Waveform MicroBase
boards, replacing the centralized block for ADCs and associated FPGA, as implemented on prior
"Main Board" designs.Ribbon cables carry UART communication, clocks for time synchronization,
and low voltage power to the PMT bases.
The UART speed of
1.5 Mbps is able to carry
all hit data to the cen-
tral MCU, using a mul-
tiplexer to select bases.
To facilitate a multi-
level detector trigger and
readout scheme [6], a
flash memory chip in a
circular buffer mode re-
tains all hit data for at
least a week.

20MHz clock

Serial data

+1.2V, +1.8V,
+3.3V, –2V

Anode
signal

Cable

Additional
PMTs & bases

Dy9/Dy8
PMT

Sync pulse

Fanout
&

MUX

Ribbon
Cable

Primary
Power +5V

Each base has:
• Microprocessor + FPGA
• Cockcroft-Walton HV
• 2-Channel Digitizer

Hitspool 
Flash
32 GB

Central Processor
STM32H743

ICM

Figure 11: The distributed processing architecture.
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3.2 Waveform MicroBase

The Waveform MicroBase (Figure 12) has been optimized for low power consumption and wide
dynamic range. The high voltage section is a resonant Cockcroft-Walton generator, identical to the
well-tested mDOM base [5], consuming about 5 mW. The same software for control and regulation
of the high voltage is run on a low-power STM32L4 microcontroller, which now additionally
manages buffering and low-level processing of digital waveform data.
IceCube neutrino events yield PMT signals varying widely in intensity, depending both on the
neutrino energy and the distance of each module from the light source. The event reconstruction
relies on the amount of light received by each PMT, the precise times of arrival, and the detailed
arrival time profile. To best capture this information, the base includes two analog channels, one for
the PMT anode and another connected to a dynode (Dy8) with lower gain. These two signals are
shaped and digitized continuously in a 2-channel ADC at 60 MSPS, and captured in a low power
FPGA. The recorded waveform is a direct representation of the photon intensity and time profile,
with individual photons appearing in Channel 1 as shaped pulses 40 ns wide and 90 ADC counts
high (Figure 13a). The anode channel remains linear for multi-photon events with intensities up to
50 PE / 25 nsec.
A discriminator triggers on the rising edge of the first photon and signals the FPGA to store the
whole waveform with up to 256 time samples, including pre-trigger and post-trigger intervals. At
the same time, a delay line module in the FPGA records the leading edge time with resolution about
1 nsec. Clock signals on the ribbon cable maintain synchronization with the master clock.

Figure 12: Ablock diagram of theWaveformMicroBase, demonstrating the integration of DAQ functionality
with HV generation at the PMT base.

Figure 13 shows typical single-photoelectron (SPE) waveforms, and the charge distribution from
Channel 1, indicating the PMT gain of 5 × 106 and a sharp discriminator threshold set at 0.15 SPE
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with baseline noise of about 1 ADC count. The Channel 1 signal path saturates for large signals,
while Channel 2 remains linear up to 5000 PE / 25 nsec. Figure 14 shows LED flashes of varying
brightness and duration, including intensities where both channels are effective and others where
Channel 1 saturates at 4095 ADC counts while Channel 2 retains linearity until a higher intensity
threshold.
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Figure 13: Left: Single Photoelectron waveforms. Right: The measured charge distribution for single
photoelectrons at a gain of 5 × 106.
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Figure 14: Left: A sample event readout, displaying narrow pulses on both channels. Event 3 has saturated
the anode readout on channel 1, but using the readout on channel 2, here taken from dynode 8, one is able to
extract information from the event. Right: The response to wide pulses. The 350 PE event has saturated the
anode readout on channel 1, but channel 2 retains linearity.

The FPGA uses double buffering methods to avoid deadtime while transferring recorded data to
the microcontroller via a SPI link. With expected dark count rates well below 1 kHz, the link
speed (6 Mbps) easily manages the data flow. The microcontroller software buffers and prepares
waveforms for transfer to the central fanout board. The UART speed of 1.5Mbps is sufficient to
carry all hit data blocks from the bases to the central MCU, selecting one base at a time with
a multiplexer. For the larger inter-string spacing of IceCube Gen2, 240m as compared to 125m
for Gen 1 and 75m for the Upgrade, most waveforms will have photon time spread of > 25 nsec,
due to scattering of photons traveling tens of meters through ice, and the 60 MSPS is sufficient.
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The chosen sampling rate is a compromise between power consumption and time granularity. The
selected ADC is compatible with use of a low power FPGA that consumes only 10 mW, while the
entire base requires 140 mW, dominated by the continuous ADC operation.

4. Outlook

An overview of the design and prototyping of new optical modules for IceCube-Gen2 is presented
here. The various constraints to be considered and optimized in the LOM are illustrated here, and
possible solutions are expounded upon. The guiding principle behind every aspect of the design is
to arrive at a procedure that is economical, fault-tolerant and easily scalable for mass production.
The design of the mechanical PMT support structure is still evolving in response to the changes
in the requirements of PMT interfacing as well as ease of manufacturing. The prototype support
structures are being modified to create a feasible assembly procedure. In the meantime, simulation
efforts are in progress to optimize the placement and shape of the gel pads, and to estimate the
photon effective area of the two prototype designs. The enhancement of the photon effective area
of a PMT with a gel pad has been experimentally verified.
The design and verification of the electronics systems are proceeding apace, with testing of the
Waveform MicroBases underway at various sites. First prototypes are expected to be completed
soon and will be ready for deployment as R&D modules in the 7 string IceCube Upgrade.
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