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1. Introduction

Located at the geographic South Pole, the IceCube Neutrino Observatory [1] is the world’s
largest neutrino telescope in terms of instrumented volume. It consists of a Cherenkov detector
of one cubic kilometre volume using the ultra-pure Antarctic ice [2] at depths between 1.45 km
and 2.45 km and a square kilometre air-shower detector at the surface of the ice [3]. The primary
objectives of the detector are the measurement of high-energy astrophysical neutrino fluxes and
determining the sources of these fluxes [4, 5].

Currently an upgrade comprised of seven densely instrumented strings in the centre of the
active volume of the IceCube detector with new digital optical modules (DOMs) is being built as
the IceCube Upgrade [6]. On each string DOMs will be regularly spaced with a vertical separation
of 3m between depths of 2160m and 2430m below the surface of the ice. Three different types of
DOMs will be used: The pDOM which is based on the design of the existing IceCube DOMs with
upgraded electronics, the D-Egg [7] which has two 8-inch photomultiplier tubes (PMTs) (facing up
and down respectively), and the mDOM [8] which has 24 three-inch PMTs distributed for close to
uniform directional coverage.

Precise characterization of the optical properties of the IceCube detector medium and thereby
reducing uncertainties in directional and energy event reconstruction is one of the goals of the
IceCube Upgrade. For this purpose, novel calibration devices will be deployed, with the IceCube
Upgrade camera system being a key component.

1.1 Objective and setup of the camera system

The IceCube Upgrade camera system aims to measure the optical properties of the ice in the
vicinity of DOMs. Additionally, information on the position and orientation of the optical sensors
will be obtained. To do this, the camera system utilises camera modules integrated inside each
newly installed DOM to measure light emitted from illumination modules that accompany each
camera pointing in the same direction. With this setup, images of both reflected and transmitted
light will be taken.

In all three types of new DOMs, three cameras are going to be installed to carry out different
types of measurements. In the mDOM two cameras will be installed in the upper hemisphere
pointing upwards at 45◦. The third camera is positioned at the bottom pole of the mDOM. At the
top of the mDOM an additional illumination board is placed to illuminate the refrozen hole ice. In
the D-Egg all three cameras are installed on a ring in the lower half of the sensor, point towards the
horizon with an angle of 120◦ to each other. The method of integration into the pDOMs is currently
being developed.

In Fig. 1 on the left, one type of measurement is sketched. The downwards facing camera
captures direct and scattered light from an illumination module in the DOM below, and the optical
properties of the refrozen ice will be inferred based on the distribution of light in the images. Of
special interest is a column of ice with different optical properties than the surrounding ice, known
as the ’Bubble column’, that was originally detected by a special camera system deployed below the
deepest DOM of IceCube string 80 [1]. The other cameras on the mDOMs and D-EGGs measure
the optical properties of the bulk ice as shown in Fig. 1, right. The bulk ice between strings is
illuminated by an LED on one of the DOMs, and a camera in a DOM on a neighboring string takes
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Figure 1: Schematic of planned IceCube Upgrade camera measurements and the simulated images of them.
Left: Refrozen hole ice measurement utilising two vertically separated optical modules on the same string.
A downward facing camera observes an upward pointing LED from the DOM below. The simulation image
in bottom-left represents imaging the bubble column in the refrozen hole ice. Right: Bulk ice measurement
utilising two optical modules on separate strings. A camera is observing scattered light from an LED on an
adjacent string pointing at an angle of 60◦ to the camera. The plot in the bottom-right shows the light cone
observed from an optical module on the adjacent string in the simulation. The schematic is not to scale. The
pixel noise is not included in the simulated images.

images of the scattered light. The optical properties of the ice can be determined based on the
distribution of incident light. Since there are multiple cameras pointing in different directions the
bulk ice measurement can be performed direction dependent to gauge the anisotropies in the optical
properties of the ice [9].

Simulated images based on a photon propagating Monte Carlo code [10] used in previous
camera studies [11, 12] are shown in Fig. 1, bottom. The studies are to be extended to develop the
image analysis methods which would be applied on the actual image data from the deployed camera
system.

1.2 Hardware

The camera module for the IceCube Upgrade camera system is a custom designed device
consisting of two PCBs constituting the camera and one PCB that serves as an illumination board.
The parts can be seen in Fig. 2. It uses a Sony IMX225LQR-C CMOS image sensor, controlled via
a Inter Integrated Circuit (I2C) interface with a MachX02 FPGA by Lattice semiconductor. The
FPGA also bridges the incoming communication using a Serial Peripheral Interface (SPI) to the
high-speed interface with the image sensor, whose connections to the DOM hardware is shown in
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Figure 2: The major components of the IceCube Upgrade camera system. A: The camera as seen from the
front; B: The camera as seen from the back showing the connectors for the mainboards and the LED system;
C: The LED board for the mDOMs from the front with the LED ID code used to identify the boards; D: The
LED board backside that shows the connector; E: The D-EGG illumination system from the front showing
the board-to board connector and LED; F: The D-EGG illumination system from the back.

Fig. 3. It also extracts the captured image data from the sensor onto an 8 MB RAM inside the
camera that serves as a frame buffer. Images have a maximal resolution of 1312 by 979 pixels
with a depth of 12 bits resulting in a file size of 2.7 MB per image using full pixel information,
which means that the camera can buffer up to 3 images. The illumination board uses an SSL 80 GB
CS8PM1.13 LED from Oslon. The LED is operated with 1 W of power generating 43 lm of light
whose dominant wavelength is 470 nm with the spectral bandwidth of 25 nm. The light emitted
has a full width at half maximum of 80◦.

Cameras for the mDOM are integrated directly into the 3D-printed PMT holding structure.
The cameras look through the glass of the pressure vessel using windows in the holding structure.
For the D-EGGs, cameras are attached to rings made from fibre reinforced plastic FR-4 using
aluminum brackets. An image of such a ring can be seen in Fig. 4. The rings are glued to the glass
of the D-EGG pressure vessels using room temperature vulcanizing silicone glue.

2. Camera calibration and design verification

To verify the camera operation and to calibrate more than 2000 cameras, all the components are
subjected to an extensive suite of tests as shown in Fig. 5 (see details in [12]). The entire test cycle
for a camera takes 48 hours, with over 3000 (8.1 GB) images captured per camera in the process.
During room temperature (20◦C) and low temperature (−40◦C) tests we capture calibration relevant
data for each camera.
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Figure 3: Flow chart of camera data and image transfer speeds between camera and DOM main board.

Figure 4: Camera testing battery in custom 3D printed holding docks (top left), assembled camera ring for
the D-Egg module with three cameras and illumination boards (bottom left), camera ring integrated in a
D-EGG (bottom middle), camera inside a mDOM holding structure (top middle), camera in mDOM holding
structure seen from the outside (right)

As cameras will operate in sparse light conditions, a characterization of the pixel darknoise is
paramount. Fig. 6 shows the average pixel darknoise at −40◦C for different camera settings.

To verify the camera response to a light source, we take multiple images of an LED at a distance
of 1 m at different camera settings. Generally, we find that pixel response for unsaturated pixels
scales linearly for each camera with exposure time and magnification, which can be expressed in
terms of the camera gain as

√
10�08=[dB]/10, as shown in Fig. 7. The camera gain is defined as a

factor in the conversion of electric charge per pixel to the digital count of that pixel.
We measure the lens - image sensor alignment for each camera (see Fig. 7, right). Manufac-

turing inaccuracies can result in a small misalignment between the fish-eye lens and image sensor
by ∼ 0.5 mm. The shift in alignment can be determined with sub pixel accuracy, which translates
to an error source for angular estimation below 0.2◦.
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Figure 5: Flow chart for the Camera Acceptance Testing.

Figure 6: Mean Pixel Darknoise distribution over 1178 cameras for multiple settings

3. Run plans for the camera system and application to IceCube-Gen2

3.1 In-ice run plan of the camera system

To maximize science data taking and to minimize the impact on the detector up-time and on
the supernova readiness, camera calibration runs will use a number of approaches; these include
keeping theminimal run time required to achieve calibration goals and operating ofmultiple cameras
across the detector simultaneously. Camera runs will require the operation of illumination boards
that introduce light in the detector (LID), which will require all optical sensor modules to operate in
a calibration mode with the PMT HV switched off. Illumination boards will excite PMTs resulting
in an increased noise rate following a calibration run. Fig. 8 shows the increased PMT base rate by
switching on the illumination boards and the decrease to normal levels within about 20 min, which
is comparable to the settling time of current IceCube detector measured after the runs of the special
camera’s illumination devices, based on a lab measurement with a 8-inch PMT for D-Egg. Given
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Figure 8: Left: PMT base rate before and after switching on one illumination LED for 90 s. PMT threshold
is 0.25 PE. Right: Relative light intensity in cameras directed at an adjacent string with a sideways pointing
illumination LED.

the low noise rates at the cold operating temperature of IceCube as well as the operational examples
from the current IceCube detector, the impact on nominal detector performance is expected to be
minimal. The impact on the supernova trigger can be mitigated by excluding optical modules in the
vicinity of the illumination boards that were operated during the calibration run.

A first set of calibration runs cycling through all cameras and all illumination boards, with one
camera or LED operating for every second, will be sufficient to triangulate orientations and positions
of all DOMs from the observed LEDs in the set of camera images. In-water tests demonstrated
that the camera can resolve 10 cm separations at 25 m distance [12]. Once the geometry of each
camera is well established, bulk ice measurements can be performed for which a camera observes
one or more LEDs on an adjacent string. Hole ice measurements will be performed by operating
simultaneously all mDOM - mDOM pairs with the downward facing camera on the upper mDOM
taking a transmission photographic image of the illuminated LED in the mDOM below. For
reflection photographic hole ice studies a large fraction of all mDOMs will be operated with their
bottom camera and the associated LED.
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3.2 Application of camera system to the IceCube-Gen2

For IceCube-Gen2 [13] the ice models developed for IceCube can be utilized and a similar
camera system base on the experiences for development and operation of the IceCube Upgrade
camera systemwill be employed. The camera systemwill perform the hole ice relatedmeasurements
outlined in this work while string to string measurements will be very challenging and are not a
priority for Gen2 (see Fig. 8). Bulk ice measurements with cameras could be made via back
scattered light using setups similar to those utilised for the SPIceCore camera measurements [14].

4. Conclusions

The camera system is a key component for a comprehensive understanding of the detector
medium. Calibration measurements acquired with the IceCube Upgrade act as a science multiplier
as they will enable to retroactively analyze more than 15 years of IceCube data with a substantially
improved ice model. Improvements in angular and energy resolution directly affect the science ca-
pabilities of IceCube. In particular improved neutrino event pointing is critical for multi-messenger
science. A significant fraction of cameras have been tested and integrated into the DOMs for the
IceCubeUpgrade. The evaluated test data demonstrates the quality of the system and its capabilities.
For IceCube-Gen2, a similar camera system will be employed to perform a hole ice survey, which
also has a potential for bulk ice studies with back scattered light.
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