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1. Introduction

Aluminum nuclei in cosmic rays, like nitrogen, are thought to be produced both in astrophysical
sources and by the collisions of heavier nuclei with the interstellar medium [1]. Previously, the
measurement of the cosmic nitrogen flux with the AlphaMagnetic Spectrometer experiment (AMS)
has been reported [2]. Remarkably, the nitrogen flux is well described by the sum of a primary
component (proportional to the oxygen flux [2]) and a secondary component (proportional to the
boron flux [2]). Recently, AMS also reported the properties of primary heavy cosmic-ray Ne, Mg,
and Si fluxes [2, 3] and of heavy secondary cosmic-ray F flux [4]. The AMS results revealed that
there are two classes of primary cosmic rays: that of the light He-C-O nuclei and that of the heavy
Ne-Mg-Si nuclei. They also revealed that there are two classes of secondary cosmic rays: that of
the light Li–Be–B nuclei and that of the heavy F nuclei.

We present the precise measurement of the Al flux in the rigidity range from 2.15 GV to 3.0
TV based on 0.51 million aluminum nuclei collected by AMS during its first 8.5 years (from May
19, 2011 to October 30, 2019) of operation on the International Space Station (ISS).

2. AMS-02 detector and analysis

AMS is a long duration, large acceptance precision magnetic spectrometer on space which
is able to measure the sign and value of the charge, the momentum, and the rigidity of charged
particles. The layout and description of the AMS detector are presented in Refs. [2]. The key
elements of AMS detector used in the aluminum flux measurement are the permanent magnet, nine
layers of the silicon tracker, and four planes of time of flight (TOF) scintillation counters.

Further information on the performance of the rigidity and charge measurements, and the
Monte-Carlo (MC) simulations, the flux analysis procedure including the event selection, back-
ground subtraction, bin-to-bin migration correction, and study of the systematic uncertainties are
detailed in Refs. [13].

Several independent analyses were performed on the same data sample by different study
groups. As shown in Fig. 1, the results of those analyses are consistent.

3. Properties of aluminum cosmic ray nuclei

Fig. 2 shows the AMS aluminum flux as a function of rigidity R̃ with the total errors, together
with the AMS nitrogen flux [2]. As seen, at rigidities above ∼ 100GV the Al flux and the N flux
have similar rigidity dependence.

Fig. 3 shows the AMS aluminum flux as a function of kinetic energy per nucleon EK together
with earlier measurements [5–10]. Data from other experiments have been extracted using Ref. [11].
Also shown in the figure are the predictions of the latest GALPROP-HELMOD cosmic ray prop-
agation model [12] based on published AMS data. The GALPROP-HELMOD model agrees well
with the AMS aluminum data above 3 GeV/n.

To obtain the primaryΦP
Al and secondaryΦ

S
Al components in the Al spectrumΦAl = Φ

P
Al+Φ

S
Al,

a fit of ΦAl to the weighted sum of a heavy primary cosmic ray spectrum, namely silicon ΦSi [3],
and of a heavy secondary cosmic ray spectrum, namely fluorineΦF [4], was performed above 6 GV.
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Figure 1: The AMS aluminum (Al) flux multiplied by R̃2.7 as a function of rigidity (upper panel) and the
ratio over average flux (lower panel) obtained on the same data sample by four independent study groups
from the University of Geneva (red dots), MIT (green squares), INFN-Bologna (blue triangles) and IHEP
(brown triangles). The correlation in the flux error from the statistics has been subtracted. The dashed black
lines in the lower panel show the average of the systematical error.

Figure 2: The AMS aluminum (Al) flux together with the rescaled AMS nitrogen (N) flux [2] multiplied by
R̃2.7 with total errors as function of rigidity.

The fit yields ΦP
Al = (0.103 ± 0.004) × ΦSi and ΦS

Al = (1.04 ± 0.03) × ΦF with χ2/d.o.f=24/36, as
shown in Fig. 4.

As seen from Fig. 4, the contributions of the primary component increases with rigidity. The
same dependence was also observed for the spectra of nitrogen ΦN [2] and sodium ΦNa [13].
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Figure 3: The AMS aluminum (Al) flux as functions of kinetic energy per nucleon EK multiplied by E2.7
K

together with earlier measurements [5–10]. For the AMS measurement the rigidity has been converted
to kinetic energy per nucleon as EK =

(√
Z2 R̃2 + M2 − M

)
/A where Z , M and A are the 27

13Al nuclear
charge, mass and atomic mass number, respectively. The dashed blue line show the prediction of the latest
GALPROP-HELMOD [12] model based on published AMS data on two primary cosmic ray classes, He-C-O
and Ne-Mg-Si and other AMS data. Note the latest GALPROP-HELMOD model agrees well with the AMS
aluminum data above 3GeV/n.

Figure 4: The AMS aluminum flux ΦAl fit to the weighted sum of the silicon flux ΦSi and the fluorine flux
ΦF above 6 GV, i.e. ΦAl = Φ

P
Al + Φ

S
Al. The contributions of the primary and secondary components are

indicated by the shading (yellow and green, respectively).

The observation that, similar to N and Na, the Al spectrum can be fit over a wide rigidity range
as the linear combination of primary and secondary spectrum permits the direct determination of
the Al/Si abundance ratio at the source, 0.103 ± 0.004, without the need to consider the Galactic
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propagation of cosmic rays.
Figure 5 presents cosmic nuclei fluxes measured by AMS as functions of rigidity from He

(Z = 2) to Si (Z = 14). It shows that there are two classes of primary cosmic rays, He-C-O and
Ne-Mg-Si, and two classes of secondary cosmic rays, Li-Be-B and F [4], and that N, Na, and Al
belong to a distinct group of cosmic rays which are the combinations of primary and secondary
cosmic rays.
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Figure 5: Cosmic nuclei spectra measured by AMS as functions of rigidity from Z = 2 to Z = 14 above
30GV. For clarity, data points above 400GV are displaced horizontally. For display purposes only, fluxes
were rescaled as indicated. The shaded tan band on N, Na, and Al is to guide the eye.

4. Conclusion

We have presented the precision measurement of the Al flux as a function of rigidity from
2.15GV to 3.0 TV based on the data collected by AMS during its first 8.5 years operation.

We found that Al nuclei, together with N and Na, belong to a distinct group of cosmic rays
which are combinations of primary and secondary cosmic rays. Similar to N and Na spectra, the
Al spectrum is well described by the sum of a primary cosmic ray component and a secondary
cosmic ray component. The fraction of the primary component increases with rigidity and becomes
dominant at the highest rigidities. The Al/Si abundance ratio at the source (0.103±0.004) is directly
determined independent of cosmic ray propagation. These are new and unexpected properties of
cosmic rays.
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