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Tau-neutrino hypothesis for the ANITA-1V near-horizon events Remy Prechelt

1. Introduction

The fourth flight of ANITA (ANITA-IV) observed four below-horizon cosmic-ray-like events
that have non-inverted polarity - a 3.20 fluctuation if due to background [1]. Unlike the steeply-
upcoming (~ 30° below the radio horizon) anomalous events of this type reported in two previous
ANITA flights (ANITA-I and ANITA-III), all of the ANITA-IV anomalous events are observed at
angles close to the horizon (all < 1° below the horizon).

A possible Standard Model explanation for this new class of near-horizon events is a skimming
v, interaction in the Earth producing a 7-lepton that escapes into the atmosphere, subsequently
decaying and producing an upgoing extensive air shower (EAS). Due to the strong attenuation
of UHE neutrinos across the long Earth-crossing chord lengths associated with the two steeply
upcoming events, this explanation for the ANITA-I and ANITA-III events is in strong tension with
limits set by IceCube and Auger for diffuse and point-like UHE neutrino fluxes [2].

However, ANITA’s sensitivity to the 7 EAS channel is highly directional and is maximal near
the horizon where it is orders of magnitude larger than for the steeply upgoing angles of the ANITA-I
and ANITA-III events. This opens the possibility for an Earth-skimming v, explanation for the
ANITA-IV events (that occur extremely close to the horizon) by significantly reducing the tension
with limits set by Auger and IceCube.

In this work, we update the previous ANITA v, EAS sensitivity analysis to estimate the diffuse
and point source transient fluxes implied by this new class of events and compare them with the
limits imposed by other neutrino observatories.

1.1 ANITA-IV’s Cosmic-Ray-Like Events

Non-anomalous air shower events observed by ANITA are classified into two categories: (1)
direct events that reconstruct above the radio horizon (i.e. ANITA observes the emission directly
from the shower at it develops in the atmosphere); and (2) reflected events where ANITA observes the
radio emission from air showers after the radio emission has reflected off the surface of Antarctica.

Along with their reconstructed direction, events are also typically classified as direct or reflected
by the polarity of the received electric field. Due to the Fresnel reflection coefficient at the air-ice
boundary, reflected EAS signals have a completely inverted polarity with respect to the signals
observed directly from an EAS without reflection. Over its four flights, ANITA has observed
seven direct events and 64 reflected UHECR events [1, 3]. The two steeply-upgoing events from
ANITA-I and ANITA-III, as well as the four new events observed by ANITA-IV, reconstruct below
the horizon but show a non-inverted polarity compared to regular reflected events (i.e. the same
polarity as cosmic rays observed from above the horizon).

2. ANITA’s Effective Area to 7-induced Extensive Air Showers

To simulate ANITA’s sensitivity to both diffuse and transient point source fluxes of UHE
T neutrinos, we have developed a new v, simulation code, the Tau Point Source Calculator, or
tapioca, that utilizes improved physics and detector models compared to previous ANITA analyses.
A flowchart showing the simulation logic, as well as some required data inputs, for this simulation
code is shown in Figure 1.
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Figure 1: A flowchart showing the top-level logic and event loop of the tapioca simulation code with the
external data sources used at each stage.

ANITA’s 7-EAS effective area, calculated using tapioca, as a function of the elevation angle
of the neutrino source on the sky for a range of energies from 1 EeV to 1000 EeV is shown in
Figure 3a. The effective area turns on at several hundred PeV with a peak effective area of O(1 km?)
at the highest energies. The effective area extends ~ 1° above the horizon as ANITA observes the
radio emission off-axis with respect to the neutrino propagation axis; therefore, an Earth-skimming
neutrino from a source slightly above the horizon can still skim the Earth, decay in the air, and be
observed > 1° off-axis. o
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3. Reconstructing the Observed Events Under a v, Hypothesis

We use a Bayesian Monte Carlo approach to reconstruct the posterior distributions of (E,,, , §)
for each near-horizon event observed by ANITA-IV, where (a,d) are the right-ascension and
declination of the neutrino source, respectively (under the assumption that these events are from
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Figure 3: ANITA-IV’s v, effective area over elevation angle (left) and over neutrino energy (right).

UHE v;’s). In particular, we use the emcee package [5] that implements an affine-invariant ensemble
MCMC sampler. For this reconstruction, we use the following likelihood function, implemented
in tapioca, that captures the entire process of neutrino emission to the observed radio-frequency
signal:

-L(Ev, a,o, t) x Ag Pexit Pdecay LH ~£¢> -Lwaveform (D

where Ay is the geometric area for a given (a, 0, fevents )?payload), Pt 1s the probability that this
neutrino generates a 7-lepton that leaves the Earth, Pgecay is the probability that the 7-lepton decays
before ANITA, (Lg, L) are Gaussian likelihoods for the observed RF elevation and azimuthal
angles, and Lyaveform 1S @ sample-by-sample Gaussian likelihood for the residuals between the
forward-modeled (simulated) waveform and the observed waveform for the event.

Since the shape of the neutrino flux at these energies is unobserved, we repeat this likelihood
optimization for different priors on the neutrino spectrum. We assume a generic power law neutrino
flux shape, EJ, between 0.1 EeV and 1000 EeV, and reconstruct the neutrino parameters for discrete
values y € {-3, -2, —1} to accommodate a range of cosmogenic and astrophysical neutrino models.
The most likely neutrino energy depends strongly on the assumed neutrino spectral index, y. For
example, for Event 72164095 under an assumed y = -2, the 50% quantile in reconstructed neutrino
energy is 15.1 EeV with lower and upper 1-0 quantiles of 7.6 EeV and 42.4 EeV, respectively.

The reconstructed neutrino parameters for all of the four events are shown in Table 1 under the
various assumptions for y. This MCMC, which forward models the entire process from incident
neutrino to detection by ANITA, includes uncertainties in the detector models as well as the
uncertainty in the observed event parameters.
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Figure 4: The posterior distributions of the neutrino energy and neutrino source locations, (E,, @, §), for
Event 72164985 under a y = —2 hypothesis as reconstructed by the emcee [5] Markov Chain Monte Carlo
using the likelihood function in Equation 1.

Event E, -1 (EeV) E,,- > (EeV) E, -3 (EeV)
80.3 29.9 6.0
4098827 49.8755 12.575; 5.2t2‘5
76.0 11.0 3.1
19848917 31.9J:24'5 5.2i2.9 2'6:.1
83.4 19.5 4.8
50549772 4547537 8.8t4_9 4.3
88.9 27.3 10.5
72164985 60.3i38.2 15.1i7_6 8.9f4_5

Table 1: The 16%, 50%, and 84% quantiles in neutrino energy E, reconstructed using Eq. 1.

3.1 Diffuse Flux Limits

Figure 6a shows the exposure of ANITA-IV to a diffuse v, flux via both the Askaryan and
upgoing EAS channels (this work). The upgoing EAS channel dominates ANITA’s v, exposure at
energies below ~ 10'? eV above which the Askaryan channel dominates. The significant discrepancy

in the total exposure rules out a diffuse isotropic v, flux origin for the four ANITA-IV near horizon

events under the Standard Model. This is the same conclusion reached for the two steeply upgoing
events observed in ANITA-I and ANITA-III [6] and consistent with the expected sensitivity of the
three flights [7].
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Figure 5: The time evolution of the effective area of ANITA-IV v, (pink) and Auger (grey) [4] in the direction
of the peak source location corresponding to event 72164985 (see Table 1). Event 72164985 occurred at the
time indicated by the blue line.

3.2 Transient Point Source Limits

As shown in Figure 5, ANITA’s effective area to a given neutrino source location on the
sky can be large, but varies significantly as a function of time since the visible portion of the
sky changes and ANITA’s effective area depends strongly on elevation angle. Therefore, ANITA
can set different sensitivity limits on the point source flux depending upon the duration of the
transient source and the interplay between the sky location of the source and ANITA’s orbit around
the continent. The instantaneous single event sensitivity (SES) limit set by ANITA-IV for short-
duration (< 15 minute) and longer duration (2 1 day) transient neutrino sources occurring at the
location of the four observed near-horizon events is shown in Figure 6b.

4. Comparison with Other UHE v Observatories

Under the assumption that ANITA-IV observed 3-4 v, events (depending upon background
assumptions [1]) from a population of transient neutrino sources, we calculate the flux-model-
independent fluence sensitivity of ANITA’s v, and Askaryan channels, as well Auger’s Earth-
skimming v, channel, for transients of various durations from one second to half-day timescales,
as well as for different full-sky transient rates varying from one per-month to several thousand per
day. While not an exhaustive search of the parameter space, this covers a representative sample of
short- and long-duration transients that are potentially detectable by ANITA without detection by
Auger.

For a given transient duration AT and average full-sky eventrate r, we throw N ~ Poisson(rTyuger)
random sources on the sky throughout the Tyyger ~ 10 years of Auger’s livetime that we simulate.
For each source, we place a box-car time-dependent flux model at the time of each simulated source
with the given transient duration, AT. We then calculate the total integrated exposure to each
of these transients using ANITA-IV’s v, effective area (this work), ANITA-IV’s Askaryan point
source effective area, and Auger’s upgoing v, effective area from [4].

Using the integrated per-source exposure, we calculate the total sensitivity across all sources
visible by each experiment assuming that the underlying flux results in ANITA-IV observing Nipye
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Figure 7: The model independent limits set by ANITA-IV’s 7-EAS channel, ANITA-IV’s Askaryan channel,
and Auger’s Earth-skimming v, channel for two different combinations of transient rate and duration.
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events, where Ny is sampled from the distribution of the true number of signal events from [1]. We
then calculate the corresponding limits on the fluence that would be set by ANITA-IV’s Askaryan
channel and Auger assuming that no events were detected in either observatory. The model
independent limits on the fluence, calculated with this Monte Carlo, is shown in Figure 7 for two
representative transient durations and rates.

For all simulated transient durations and full-sky rates, the observation of ~ 3—-4 v, events is in
tension with Auger across the full simulated energy range, and is also in tension with ANITA-IV’s
Askaryan channel above ~ 10'8-3 eV. The strength of the fluence limit set by each detector can
vary significantly with the transient duration and full-sky transient rate, but Auger always sets a
stronger limit than the ANITA-IV v, channel for all simulated rates and durations. Above 10%° eV,
ANITA-IV’s Askaryan channel is able to set a stronger limit (in ~ 28 days) than Auger for all
simulated transient durations and full-sky transient rates.

5. Conclusion

We have analyzed the plausibility that the upgoing near-horizon ANITA-IV events are explained
by t-lepton-induced extensive air showers from skimming v, interactions in the Earth. To achieve
this, we have applied detailed models of the v, — 7 propagation through the Earth, radio emission
from air showers, and the ANITA-IV detector. We find that these events are observed at sky
locations close to the maximum of the expected distribution of detected v, sources. However, there
is tension between the v, origin of these events and the diffuse and point source v, flux limits, both
for steady-state and transient sources, set by the Pierre Auger Observatory (calculated by us) as well
as ANITA-IV’s Askaryan channel above 10'° eV.
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