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1. Introduction

KM3NeT is a research infrastructure under construction at the bottom of the Mediterranean
Sea. It consists of two neutrino detectors: ARCA (Astroparticle Research with Cosmics in the
Abyss) located off-shore Portopalo di Capo Passero, Sicily, Italy, at a depth of 3500m and ORCA
(Oscillation Research with Cosmics in the Abyss) off-shore Toulon, France, at a depth of 2450m.

The main goal of ARCA is to detect TeV-PeV neutrinos from astrophysical sources or in
coincidence with other high energy events, for example gravitational waves, gamma ray bursts or
blazar flares. The ORCA detector will study oscillations of the atmospheric neutrinos in the GeV
range, in order to determine the neutrino mass hierarchy (NMH) [1].

Both detectors have the same structure. They consist of vertically aligned detection units (DUs),
each carrying 18 digital optical modules (DOMs) [1]. Each DOM houses 31 3-inch photomultiplier
tubes (PMTs), calibration and positioning instruments and readout electronics boards. ARCA and
ORCA differ in the horizontal (90m and 20m respectively) and vertical (36m and 9m respectively)
spacing between the DOMs, which is optimised for the energy ranges mentioned above. Currently,
both detectors are taking data with 6 DUs installed at each site. In final configurations, there will
be 115 DUs at ORCA and 2x115 DUs (in two blocks) at ARCA site.

Atmospheric muons are the most abundant signal in a neutrino telescope and a major back-
ground to the physics analyses with neutrinos, however they also prove useful in testing the detector
performance and validity of the simulations. In this paper, a comparison of the first data collected
by ARCA and ORCA to the Monte Carlo (MC) simulations is presented.

Muon data contains valuable information about the extensive air showers (EAS) forming in the
Earth’s atmosphere and about the cosmic ray (CR) primaries that cause them. At muon energies
above PeV, a contribution from muons created by quickly decaying heavy hadrons (often containing
the charm quark), called prompt muons, is predicted. It has not been experimentally confirmed yet.
The first results evaluating the expected signal due to the prompt muon contribution are shown in
secion 4. They are based on muon simulations for the full ARCA and ORCA detectors.

2. Muon simulation

TheKM3NeT simulation chain is divided into several stages. The generation of the atmospheric
muon bundles is performed using two different codes: MUPAGE [2] and CORSIKA [3]. MUPAGE
is a fast simulation program, based on parametric formulas that generates muon bundles, induced
by CRs impinging the Earth’s atmosphere. The muon distributions are sampled on the surface of
the active volume of the detector at different undersea depths and zenith angles. CORSIKA is a
software package that simulates the interactions of the primary CRs in the upper atmosphere and
follows the development of the shower to a specified observation level (here, it is the sea level).
The CORSIKA package is flexible and allows to choose between different models to describe the
hadronic interactions and the composition of the primary CR flux.

The GENIE-based code, gSeaGen [4, 5] is a multipurpose tool, commonly used in KM3NeT
to simulate the neutrino interactions in the detectors. In this work, gSeaGen is used to convert
the CORSIKA output into the KM3NeT standard format, compute event weights according to the
specified CR composition model and propagate muon bundles from the sea level to the active
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(a) Distribution for ARCA2. (b) Distribution for ORCA4.

Figure 1: Rate of atmospheric muons as a function of the reconstructed zenith angle for data and MC
simulation for the ARCA2 and ORCA4 detector. Most of the upgoing events (all MC events) are downgoing,
but are badly reconstructed as upgoing. No quality cuts have been applied to remove the badly reconstructed
tracks.

volume of the detector. The propagation is done using a 3-dimensional muon propagator, in this
case: PROPOSAL [6]. This step is not necessary for MUPAGE, as it already generates events at
the detector level.

After the propagation, Cherenkov light emission along the path of muons and their probability
to be detected by the DOMs are simulated with a custom application developed for KM3NeT
called JSirene, using multidimensional interpolation tables [7]. Subsequently, the following effects
expected in the real data are also included in the simulated set: the environmental optical background
due to the bioluminescence and the 40K decay, detector response, taking into account the front-end
electronics. For MUPAGE the simulation is performed in a run-by-run mode, which means that
each data taking run is simulated separately. On the other hand, for CORSIKA amuon flux averaged
over all runs is simulated. The same trigger algorithms as used for real data are applied to identify
possible interesting events in the simulated sample [8]. Finally, the selected events are processed
with the track reconstruction program "JGandalf", used for the real data stream as well [9]. At this
stage the simulated MC events can be easily compared to the calibrated data. A track reconstruction
algorithm is applied both to data and MC events.

3. Data vs MC comparisons

A sample of data collected with 2 DUs of the ARCA detector (ARCA2) from the 23th of
December 2016 to the 2nd of March 2017 and with 4 DUs of the ORCA detector (ORCA4) from
the 23th of July to 16th of December 2019 has been compared with the expectation from the MC
based on the same triggering and reconstruction criteria (described in Section 2).

A sample of muon bundles with energies larger than 10 GeV and multiplicity up to 100 tracks
was simulated with MUPAGE. The equivalent livetime is close to the considered detector livetime,
about 20 days for ARCA2 and 10 days for ORCA4. The simulated MUPAGE events processed, as
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(a) Distribution for ARCA2. (b) Distribution for ORCA4.

Figure 2: Rate of atmospheric muons as a function of the reconstructed energy for data and MC simulation
for the ARCA2 and ORCA4 detector. More details on the energy reconstruction can be found in [9].

described in Section 2, are shown in Figures 1 and 2 with the red marks. Only statistical errors are
shown in the plots.

A total number of 2.5 · 109 showers have been simulated with CORSIKA, using SIBYLL-
2.3c to describe the high-energy hadronic interactions [10]. Five different species of nuclei were
considered as primaries: ?, �4,�,$ and �4with energies between 1 TeV and 1EeV. The procedure
presented in Section 2 has been followed and events were reconstructed with the same algorithm
as for MUPAGE and experimental data. At the end, the events have been weighted according to
the GST3 CR composition model [11]. The results of the CORSIKA simulation are shown as blue
markers in Figures 1 and 2 and compared with data indicated as black points. The errors plotted
are statistical only (ΔG =

√∑
F2
8
, where F8 is the weight of the 8-th MC event). In all plots no

systematic uncertainties are considered.
The early results presented here show that the used MC samples reproduce the data with

resonable level of agreement. The reconstructed upgoing muons in Figure 1 are misreconstructed
downgoing muons. No quality cuts or selection have been applied to remove poorly reconstructed
tracks. Note, that the systematic uncertainties, which have not been considered here, are expected to
be larger than the statistical errors. The fact that the MC reproduces the shape of the data, confirms
that the KM3NeT simulation chain is reliable and under control.

4. Prompt muon analysis

The atmospheric muon flux is commonly divided into two categories: conventional muons,
created mostly in c± and  ± decays and prompt muons originating predominantly from decays of
short-lived heavy hadrons. With this analysis, the potential of KM3NeT to observe the prompt
muon flux is investigated.

The prompt sensitivity study is performed on a CORSIKA MC sample different than the one
used for results of Section 3. The total number of simulated showers is 5.3 · 106 and SIBYLL-2.3d
is used for high-energy hadronic interactions [12]. Primary CR energies are simulated in the range
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Figure 3: Rate of atmospheric muons per detector volume as a function of the distance between the first
interaction of the primary and the point, where the muon was produced. The plot is done for ARCA115
detector based on the CORSIKA Monte Carlo at the detector level without light simulation, triggering or
reconstruction.

from 0.9 PeV up to 40 EeV. Lower primary energies are not considered, since already PeV primaries
will produce at most 10 TeV muons, which are well below the region, where the prompt muons
are expected to start dominating. At these energies, they will be strongly overwhelmed by the
conventional muon flux.

The prompt muon compontent was defined for the CORSIKA MC events based on two condi-
tions: that all parent particles have lifetimes shorter than the one of  0

S (8.95 · 10−11s) and that there
are at most three generations of particles between the primary and themuon. This definition is tested
in Figure 3, where it is shown how far from the interaction of the primary particle that started the
shower, the muon is produced. Very close to the first interaction, there is indeed an excess coming
from the prompt muons as expected, which confirms that the definition in use is sensible. The signal
(SIG) for the analysis is defined to be muon bundles with at least one prompt muon (according to the
introduced definition). Background (BGD) are the bundles with zero prompt muons and TOTAL
denotes all muon bundles put together. The distributions of muon bundle energies for BGD and
TOTAL are shown in figure 4 and there is a clear excess above BGD starting around 1 PeV, although
difference is not large. This expected signal is promising and has to be verified at the reconstruction
level.

5. Conclusions

With the first KM3NeT data, it is possible to compare the measured and the expected muon
rate at ARCA and ORCA sites. The agreement between the data and MC is satisfactory and the
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Figure 4: Rate of atmospheric muon bundles per detector volume as a function of the bundle energy (sum
of energies of individual muons) for BGD and TOTAL for the ARCA115 detector.

simulation procedure provides reliable results. Nonetheless, there are ongoing efforts to further
improve the description of the data. In the nearest future, the analysis will be repeated for data
collected with the present configuration of the detectors: ARCA6 and ORCA6 (ARCA and ORCA
each with six DUs installed) and using new MUPAGE and CORSIKA MC productions. A number
of improvements is foreseen for the MC chain: optimisation of the muon propagation step, better
definition of the geometry of muon propagation, a more accurate calculation of the event weights
and addition of the contribution from delta rays to the energy reconstruction, to name a few. A
systematic uncertainty study and an increase of the statistical significance of the sample, especially
at the highest energies are planned for the CORSIKA MC.

The first results from the prompt muon sensitivity study are enouraging and suggest KM3NeT
is sensitive to the prompt component. Figure 4 presents the expected result for ARCA115 (one
building block of the ARCA detector, with 115 DUs). A similar behaviour has also been seen for
ORCA115 simulation. A verification at the reconstruction level is necessary to ensure that detectors
are efficient enough to extract the prompt signal. After the complete workflow of the analysis is
established, comparison to the results of IceCube [13] is planned with the newest prompt muon
flux models. Additionally, the muon multiplicity (observed number of muons in a bundle) has been
found to be useful observable for the analysis and will be included to further boost the sensitivity.
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