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Search for neutrinos from GRBs

1. Introduction

Gamma-ray bursts (GRBs) are bursts of intense gamma radiation, lasting from several ms up
to several 100 s. GRBs have a non-thermal spectrum and have three phases of emission: precursor,
prompt and afterglow. Based on the duration of the prompt phase ()901), they are hypothesized to
occur either due to the core collapse of super-massive stars (for)90 > 2 s) or due to the binary merger
of compact objects (for )90 < 2 s). Due to the extreme environments in which they occur, GRBs are
potential sites of ultra-high-energy cosmic-ray production and therefore potential neutrino source
candidates [1]. IceCube analyses have been performed previously to search for neutrino emission
from the prompt phases of GRBs and found no significant excesses [2–5]. However, after the recent
discovery of GRB activity following gravitational waves (GWs) from compact mergers by LIGO
and Virgo [6] as well as observations of gamma radiation well outside the prompt phase [7], we
are motivated to extend our search beyond the prompt phase to investigate a possible correlation
between GRBs and the neutrinos detected by IceCube.

The IceCube Neutrino Observatory is a cubic-kilometer scale neutrino detection facility at the
Geographic South Pole in Antarctica. It is a Cherenkov detector which makes use of 5160 Digital
Optical Modules (DOMs) embedded in the glacial ice between the depths of 1450-2450 meters to
detect astrophysical neutrinos.

Four analyses were designed to study the GRBs within the time frame of the IceCube neutrino-
candidate events dataset and the results are presented in this proceeding. The “Extended TW”
analysis, named for a whole range of different time windows, considers all GRBs, regardless of
localization, within the data period. The “Precursor/Afterglow” analysis focuses on well localized
GRBs and performs a search separately for precursor and the prompt+afterglow phases without
a fixed time window. The “GBM Precursor” analysis focuses on precursor emission based on
gamma-ray precursor observations by Fermi-GBM. The “Stacked Precursor” analysis performs a
stacked search on well-localized bursts and with a fixed time window. The statistical significance of
the population of results from the analyses is evaluated using the cumulative binomial probability
and the post-trial final p-values for the four analyses are discussed respectively in this proceeding.

2. Analysis method

Each of the analyses makes use of an unbinned maximum likelihood method to quantify the
potential correlation between GRB observations and IceCube events. In this section, we present
details on the analysis method, GRB sample and IceCube events used in the analyses.

2.1 GRB Catalog

IceCube hosts a publicly available online GRB catalog2 that pools GRB observations from a
wide range of GRB detectors and follow-up observatories. The GRB sample of the analyses share
the same base list of GRBs from GRBweb, but each analysis imposes additional selection criteria
on the GRB properties. These criteria, shown in Table 1, were motivated by their effects on the
sensitivity and the compatibility of e.g. Fermi-GBM localizations with the analysis technique.

1)90 is the time interval that covers the central 90% of the total gamma-ray photon count, starting at 5% and ending
at 95%. Note that this parameter depends on the energy range of the observing detector.

2https://icecube.wisc.edu/ grbweb_public/

2

https://icecube.wisc.edu/~grbweb_public/


P
o
S
(
I
C
R
C
2
0
2
1
)
1
1
1
8

Search for neutrinos from GRBs

Table 1: The number of GRBs used in each analysis, whether or not only GRBs with known)90 durations are
required, the maximum uncertainty on the localization, and the number of GRBs localized by Fermi-GBM.

Analysis # GRBs Duration Max Localization Uncertainty # GBM Localized
Extended TW 2091 Required — 1236

Precursor/Afterglow 733 — 0.2◦ —
GBM Precursor 133 — — 100
Stacked Precursor 872 — 1.5◦ —

2.2 IceCube event selection

All analyses use the same sample of IceCube events that consists of well reconstructed muon
tracks from May 2011 to October 2018. The vast majority of events that trigger the IceCube
detector are not astrophysical neutrinos, but events related to cosmic-ray air showers. In the
Southern hemisphere, atmospheric muons are observed at a rate of 2.7 kHz. Since only neutrinos
can propagate through the Earth without being absorbed, this background vanishes in the Northern
hemisphere, where atmospheric neutrinos dominate the background at the mHz level. A selection
with different data quality cuts for the Northern and Southern hemisphere is therefore used, which
reduces these backgrounds to 6.6 mHz integrated over the full sky. Assuming an �−2 spectrum,
the efficiency for selecting astrophysical neutrinos is estimated to be 95% above 100 TeV in the
Northern hemisphere and 70% above 1 PeV in the Southern hemisphere. A detailed account of this
event selection is given in [8].

2.3 Unbinned log likelihood / TS

An unbinned log likelihood method is combined with frequentist statistics to assign a proba-
bility that a subset of neutrino candidate events is inconsistent with background. The probability of
each individual event being signal versus accidental coincidence is calculated based on its recon-
structed energy, arrival time, and reconstructed direction relative to the GRB location. Probability
density functions (PDFs) are generated for the energy, space, and time of background (atmospheric
muons and neutrinos) and signal (astrophysical neutrinos). The background energy PDF, �(G8),
is constructed from data such that it represents the spectrum of all background events. For the
signal energy PDF, ((G8), the “Precursor/Afterglow” analysis allows the spectral index to be a fit
parameter, while the other analyses assume an E−2 spectrum. The background space PDF is created
from data and only varies as a function of declination as azimuthal symmetry can be assumed. The
signal space PDF, shown in eq. (1), uses a 2D Gaussian to determine the probability of the neutrino
candidate’s reconstructed position, ®Ga , being consistent with the source position, ®G�'�,

((®Ga , f | ®G�'�) =
1

2cf2 4G?

(
− |®Ga − ®G�'� |

2

2f2

)
, (1)

where f is the uncertainty on the reconstructed neutrino direction. Depending on the analysis
method, the GRB position uncertainty is either negligible or taken into account as outlined below.
The background time PDF is assumed to follow a uniform distribution across the analysis time
window. The signal time PDF is a uniform box, which means that the PDF value is constant when
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the event falls within the time window and 0 when it falls outside the time window. The specific
time windows used in each analysis are described in Section 2.5.

The probability density functions are applied to every event G8 in the dataset to obtain the
following test statistic:

)( = ln
[

! (=̂B)
! (=B = 0)

]
= −=̂B +

#∑
8=1

ln
[
=̂B((G8)
〈=1〉�(G8)

+ 1
]
, (2)

where 〈=1〉 is the average number of background events and =̂B the number of fitted signal events that
maximize the log likelihood ratio. High-energy events in temporal and close spatial coincidence
will contribute most significantly to the test statistic. The p-value of a given GRB is determined by
comparing the unblinded test statistic to a test statistic distribution created from scrambled data.

The “Extended TW” and “GBM Precursor” analyses have additional steps to create the test
statistic distribution due to the poor localization of GRBs solely detected by the Fermi-GBM satellite
[9]. All-sky test statistic maps of scrambled neutrino data are combined with a probability map
provided by Fermi-GBM for a given GRB. The probability %GBM acts as a penalty to the test
statistic:

)(final = )(original + 2 × [ln(%GBM) − ln(%GBM,max)] , (3)

where )(original refers to the test statistic from Eq. (2). The position of the GRB on the sky and the
number of signal events are thus fitted, to find the combination which maximizes )(final.

2.4 Cumulative Binomial Test

Analyzing a selection of # GRBs will result in a ?-value for each individual burst. A trials-
correction method is thus needed to determine if a subset of the obtained ?-values provides a
statistically significant result. Arranging the unblinded ?-values from smallest to largest, their
values are denoted as ?1, ?2, ..., ?# . Under the background hypothesis (=B = 0), these # ?-values
are expected to follow a uniform distribution between 0 and 1. The probability to find : or more
?-values that are smaller than or equal to ?: thus corresponds to the following binomial distribution:

%(:) ≡ %(= ≥ : |#, ?:) =
#∑
<=:

#!
(# − <)!<!

?<: (1 − ?:)
#−< . (4)

Looping over all potential : , the smallest %(:) is selected and used to define a test statistic
)( = −2 log (%(:)). A frequentist approach is then used to determine the significance of the
observed )( value based on the background )(-distribution. This binomial test is illustrated in Fig.
1 and was used to determine the final ?-value for the “Extended TW” and “Precursor/Afterglow”
analyses. It was verified that the unblinded result is not artificially boosted by a single IceCube
event contributing to the significance of multiple GRBs.

A slightly different method was used in the “GBM Precursor” analysis. Instead of considering
the :-th smallest ?-value, the product of the : smallest ?-values was used, as this resulted in an
improved sensitivity and discovery potential for that particular analysis.
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Figure 1: Left: An example of the binomial test based on simulation. In this trial, k=10 was found to be most
significant with a binomial p-value of 0.043 (red line). Right: The post-trials p-value (red line) correction of
the binomial p-value (blue line) found in the test on the left. The cumulative sum in this plot is created from
scrambled data, which includes possible correlations between GRBs.

Figure 2: Left: The time windows used in the “Extended TW” analysis. These 10 time windows are
evaluated for all GRBs, regardless of their duration. The first 9 time windows are centered on )100, while
the longest time window is asymmetric about the GRB duration. Right: An example of an effective trials
correction used to correct the most significant of 10 p-values to the final post-trials p-value for a given GRB.

2.5 Analysis approach

Extended TW. The “Extended TW” analysis calculates p-values for 2,091 GRBs in 10 pre-
determined time windows and selects the most significant of those 10 p-values. The pre-determined
time windows range from 10 seconds to 2 days centered on the )1003 of the GRB, and the final time
window is asymmetric with a 1 day precursor and 14 day afterglow (see Figure 2).

The trials correction for searching 10 time windows is also shown in Figure 2. To determine
the effective trials correction for a given GRB, a set of pre-generated test statistic scans is used to
calculate the background-only p-value in each time window. The test statistic scans are carefully
controlled to ensure that the scrambled data is the same in each time window. The data in the 10

3)100 is defined as the time between the earliest and latest measured gamma-ray excess.
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second time window is exactly contained in the 25 second time window, and so on. The best of the
10 p-values for each scramble is added to a cumulative sum, which is used as a look-up table to
correct the unblinded p-value for a given GRB.

The p-values that have been corrected for searching 10 time windows are then evaluated in a
binomial test (Section 2.4) to correct for the population size.

Precursor/Afterglow. The “Precursor/Afterglow” analysis searched for neutrino excesses sep-
arately from the precursor phase and from the prompt+afterglow phase of GRBs. GRBs with
positional angular uncertainty of less than 0.2° were considered for this analysis so that they can
be approximated as point sources in the IceCube analysis. This resulted in a catalog of 733 GRBs
and searches were performed separately for the precursor and afterglow phases of these GRBs.
The best-fit values were obtained for the number of signal events (=B), spectral index (W), and time
window of emission ()F ) for every GRB in each search. Regarding the temporal part of the Signal
PDF, one end of the flat box shaped time window was assumed to be at the start of the prompt
phase ()0) and the other end was fitted using the data either up to 14 days prior to )0 (for ‘precursor’
searches) or up to 14 days after)0 (for ‘prompt+afterglow’ searches). Every GRB reported a p-value
as well as the best-fit parameters for the respective search. This altogether resulted in two lists of
733 p-values, one for each search. The binomial test was performed on the two lists of results for
the respective searches to investigate for statistically significant signals from a smaller population
of sources from our GRB selection. The overall significance of each search is determined using the
final post trial p-value which is obtained using the binomial test result for the respective search.

We performed a study to test the signal detection sensitivity of our analysis (see Figure 3). We
define the sensitivity as the 90% Confidence Level (CL) upper limit in the case that there is no
signal. Hence it is the signal strength which, in 90% of the cases, would give a lower final p-value
than the median of the final background TS distribution. Figure 3 shows how different numbers
of individual 2-f,3-f and 4-f p-values can result in 90% of our trials reporting a final post-trial
p-value better than the median result.

GBM Precursor & Stacked Precursor. An analysis of the light curves of 2368 Fermi-GBMGRBs
found evidence for precursor activity in ∼10% of all GRBs [7]. Gamma-ray precursors indicate
that central engine activity is already ongoing at an early stage and offer a precise time window to
look for counterpart neutrino emission. A selection of GRBs with precursor emission was made
[7], resulting in 133 precursor bursts for which IceCube data is available. For each burst, the time
window of precursor emission, extended by 2 s on either side, was searched for neutrino emission.
The 133 p-values were then trial-corrected by considering the product of the : most significant
p-values.

The “GBMPrecursor” analysis also revealed [7] that almost all (>95%) precursors occur within
250 s of the prompt emission. A second analysis, looking for excess neutrino emission in the 250 s
that precedes the start of the prompt phase, was therefore implemented. This second analysis used
872 well localised bursts (as indicated in Table 1) and a stacking procedure in which only a single
=B value is fitted for the combined set of GRBs. This stacking approach results in an improved
sensitivity compared to analysing each GRB individually, but restricts the analysis to well localized
GRBs.

6
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Figure 3: Post-trial sensitivity calculation for the “Precursor/afterglow” search. This is based on 10,000
instances of simulated datasets. Different combinations of individual p-values can lead to the same final
p-value. As evident from our study, different numbers of individual n-f results will result in 90% of our
trials reporting a final p-value better than 0.5.

Table 2: Post-trials p-value of the binomial test for the “Extended TW” study of 2,091 GRBs. The binomial
test was run on four subsets of GRBs split by hemisphere and duration. The number of GRBs in each
sub-population is indicated in parentheses.

Northern Long (960) Northern Short (183) Southern Long (814) Southern Short (134)
0.038 0.799 0.898 0.849

Table 3: Statistics for the top GRB for each sub-population in the “Extended TW” study of 2,091 GRBs.
The number of GRBs in the sub-population is indicated in parentheses. The pre-trials p-value listed is
corrected for searching ten time windows, but is not corrected for the population size. The post trials p-value
is corrected for the population size and for searching ten time windows.

GRB Name Sub-Population Most Significant Time Window Ppre Ppost

140607A Northern Long (960) ±1 Day 6.0e-04 4.4e-01
GRB140807500 Northern Short (183) 100 Seconds 4.8e-03 5.9e-01

150202A Southern Long (814) ±1 Day 5.0e-04 3.3e-01
GRB140511095 Southern Short (134) ±1 Day 9.2e-03 7.1e-01

3. Results

3.1 Extended TW

2,091 GRBs were evaluated for neutrino correlation in 10 time windows (Figure 2), with the
most significant p-value selected to represent the GRB. Those 2,091 p-values are split into sub-
populations by hemisphere and duration, and evaluated with a binomial test. The results of the
binomial test are summarized in Table 2 and are consistent with background. The GRB with the
most significant result from each sub-population is listed in Table 3.

7
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3.2 Precursor/Afterglow

The 733 GRBs considered for this analysis were analysed individually for the two different
searches. This resulted in one list of 733 individual p-values and best-fit parameters for the precursor
search and another list of 733 individual p-values and best-fit parameters for the prompt+afterglow
search. The binomial test was performed on each of these lists and the statistical significance
of the best binomial p-values thus obtained are 0.495 for the precursor search and 0.486 for the
prompt+afterglow search respectively. The results are comparable with a median background
expectation (final p-value of 0.5).

3.3 GBM Precursor & Stacked Precursor

Considering only events within a relative combined neutrino and GRB angular uncertainty of
5f, no neutrino events arrived in temporal coincidence with the precursors of the 133 GRBs. The
second stacking analysis did find five IceCube events in temporal and spatial coincidence with the
872 GRBs. Given that a 250 s time window was examined per GRB and given that all five events
have energy consistent with that of background events, this observation is fully consistent with the
background expectation. Hence, this stacking analysis also resulted in a ?-value of 1.

4. Conclusion

We searched in the direction of GRBs reported by various instruments to check for neutrino
emissions not limited to the prompt phases of GRBs. The four analyses presented here all report
observations consistent with background expectations. The binomial tests did not report any
significant sub-populations with statistically significant results for the GRBs considered in each
analysis. The results from these analyses will be used in future work to compute upper limits on
neutrino fluxes from GRBs as well as to constrain the contribution to IceCube diffuse flux. These
results can subsequently be used to constrain physical models such as that presented in [10].
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