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1. Introduction

In their way to the Earth, some cosmic rays (CRs) are blocked by the Sun. The interaction of
these blocked CRs with the solar atmosphere may yield neutrinos in all directions. Some of these
neutrinos would be absorbed by the inner part of the Sun, but others, those produced in the corona,
can escape the solar medium and reach the Earth. These Solar Atmospheric Neutrinos (SAνs)
would be an unavoidable background for dark matter (DM) indirect searches.

Besides the important fact that would be the understanding of the characteristics of this potential
background source, the detection of these SAνs can shed light on: the primary CR composition,
the solar density and the parameters of neutrino oscillations [1, 2].

The mechanism to produce SAνs is similar to that of the production of atmospheric terrestrial
neutrinos but, being the solar atmosphere less dense than the terrestrial one, the unstable secondary
particles produced by CR interactions are more likely to decay than to interact in the solar medium,
making the expected SAν flux to be a slightly above than the atmospheric terrestrial one. The
overall SAνs are produced in the outer part of the Sun since at a sufficently large depth, almost
every secondary CR would have decayed. Finally, the resulting neutrino1 flux at production has an
approximate flavour ratio of {νe} : {νµ} : {ντ} = 1 : 2 : 0. However, the final neutrino flux at
Earth, after oscillations, has a flavour ratio of 1 : 1 : 1 [1].

2. The ANTARES Neutrino Telescope

TheANTARES detector [3] is anchored to the seabed at a depth of 2475m in theMediterranean
Sea at (45◦ 45’ N, 6◦10’E), 40 km offshore from Toulon. ANTARES deployed its first detection
line in 2007 and was completed in 2008. Since then, it has been continuosly taking data.

The ANTARES full configuration consists on 12 detection lines 450 m long distributed on
an octogonal layout with an horizontal spacing of about 60-75 m. Each line houses 25 storeys,
vertically spaced by about 14 m. The 12th line has 20 storeys completed with acoustic detection
devices. Each storey hosts three optical modules (OMs), being the first one located 100 m above
the sea-bed.

The OM [4] main component is a 10-inch hemispherical photomultiplier tube (PMT) glued in
a pressure resistant glass sphere with optical gel. Each PMT is facing 45◦ downward, optimizing
the detection of upward-going light from charged particles.

The photons detected in the PMTs induce a signal called hit [5]. The position, time and
collected charge of the hits are used to reconstruct the direction and energy of each event. Different
trigger algorithms [3] are responsible for signal and noise classification.

The trigger and data acquisition in an under sea neutrino telescope is affected by environmental
changes, bioluminescence processes, sea current velocity changes and possibly malfunctioning
detector elements. In order to correctly reproduce the detector response under these conditions,
ANTARES simulates the atmospheric muons and neutrino interactions following a MC run-by-run
strategy [6].

1Here and in the following, the word neutrino refers to both ν and ν̄ unless otherwise specified
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3. Analysis

3.1 Monte Carlo and Data sample

Neutrino induced events can be classified into two main groups: track like and shower like
events. Track like events are produced by charged current (CC) νµ and ντ interactions. νµ CC
interactions yield muons as final state particles. ντ CC interactions can produce final state muons
through muonic decay of the final state particle τ. All neutral current (NC) reactions, as well
as charged current reactions of νe and most ντ , produce shower like events. These showers are
typically several meters long and therefore small compared to inter-OM distances.

In this work we have tested two different CR models as signal component: the Hillas-Gaisser
3-generation model (H3a) [7] and the Gaisser-Stanev-Tilav 4-generation model (GST4) [8]. Also,
two different solar density profiles have been used: Ser+Stein [9] and the Grevesse & Sauval solar
density profile, refered as Ser+GS98 [10]. These models are included within the solar_crnu
WIMPSim 5.0 package [11, 12]. Neutrino oscillations from best-fit values [13] and normal mass
ordering are assumed. Three different source shapes have been considered: the Sun as a point
source, as a filled disk and with ring shape. As a base-line case of study the H3a CR model with
the Ser+Stein solar density profile has been chosen. Also, the Sun has been considered as a point
source.

The two main background sources considered for this analysis are atmospheric muons and
atmospheric neutrinos produced in the interactions of cosmic rays in the upper atmosphere.

In this analysis, the search for SAνs is done through the track channel only (νµ CC) taking
advantage of the excellent ANTARES angular resolution (0.4◦ at Eν = 10 TeV). Also, a region of
interest (RoI) of 30◦ around the Sun is chosen. In order to optimize the search for SAν signatures
and reject the background, a selection of quality cuts (θzenith,Λ, β) [14] is applied. Selecting only
upward-going events in the detector θzenith > 90◦, the background is reduced considerably because
the atmospheric muons are stopped by the Earth. Cuts in the reconstruction fit parameter Λ > −5.2
and in the error estimate in the reconstructed angle β < 1◦ are also established to select the best
possible reconstructed events in the sample.

3.2 Likelihood

In order to search for an excess of signal of solar atmospheric neutrinos, an unbinned likelihood
method based on the Neyman [15] approach is used. The likelihood used for the analysis is

L(nsig) = e−(nsig+nbkg)
N∏
i

[
nsig · S(Ψ�,i, βi, Ei) + nbkg · B(Ψ�,i, βi, Ei)

]
, (1)

where:

• S and B are the signal and background PDFs, respectively.

• nsig is a free parameter to fit in the likelihood, and represents the number of signal events in
the sample.

• nbkg is the expected number of background events in the sample.

3
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• N is the total number of reconstructed events within the RoI in the data taking period. It can
be expressed as N = nsig + nbkg

• Ψ� is the angular distance to the source.

• β is the error estimate in the reconstructed angle.

• E is the energy proxy.

The information characterising the signal and background events is contained in their corre-
sponding PDFs, S and B respectively. In Fig. 1 the PDFs used in the likelihood maximisation
process are shown. In these PDFs the angular distance between the direction of the reconstructed
track and the position of the Sun (x-axis) is plotted as a function of the reconstructed energy of the
event (y-axis). The logarithm of the probability for an event to have a certain energy and angular
distance to the source is shown in the colorbar. The PDF on the left shows that the signal events are
highly probable to be accumulated above 102.5 GeV within a few degrees around the source, whilst
background events are more uniformly distributed in angular distance but are more likely to have
an energy between 102 and 103.5 GeV.

The signal PDF is built from Monte Carlo simulations [6] and the events are weighted by the
Solar Atmospheric Neutrino energy spectra [1], which is computed with the package solar_crnu
included in WIMPSIM 5.0 [11, 12]. The background PDF is built from scrambled data. The
ingredients of each PDF are: the angular distance to the source, Ψ�; the error estimate in the
reconstructed angle, β; and the energy proxy, E . The likelihood maximisation process runs over
the number of reconstructed events (N = nsig + nbkg) within a region of interest (RoI) of 30◦ around
the source. The output best-fit parameter of the likelihood is n̂sig.

The significance of the signal event is established by the test statistic TS (Eq. 2).

PRELIMINARY

Figure 1: Signal (left) and background (right) PDFs used as inputs in the likelihood function. The angular
distance between the direction of the reconstructed track and the position of the Sun (Ψ�) is plotted as
function of the reconstructed energy of the event. These PDFs are normalized per solid angle to unity.

TS = log10

(
L(n̂sig)
L(0)

)
. (2)

4
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The denominator corresponds to the likelihood of the null hypothesis case, for the background-
only scenario. The numerator corresponds to the alternative hypothesis for the background + signal
events in the sample, being n̂sig the best-fit parameter of Eq. 1.

The ANTARES quality cuts are chosen to optimize the sensitivitiy to the SAν flux. Pseudo-
experiments are conducted to build TS distributions. O(104) pseudo-experiments have been per-
formed for the null and the alternative hypotheses. Each pseudo-experiment consists of mock
samples randomly sampled according to the PDF of a certain hypothesis.

In order to introduce the natural statistical fluctuations effect in the pseudo-experiments, each
TS distribution is transformed through a Poisson function. Also, a 15% systematic uncertainty on
the number of detected events is expected with ANTARES [16]. This effect is included folding
each TS distribution with a Gaussian smearing of 15% width.

The resulting TS distributions are compared with the median of the background-only distri-
bution to obtain the 90% confidence level (CL) sensitivity on the number of signal events. This
sensitivity represents the minimum number of events n90% CL

sig needed for being able to discriminate
from the pure background case, giving a false positive error less or equal than 10% of the times.
According to Neyman, upper limits will be set equal to the sensitivity in case a value smaller than
the background median is observed in the data.

In order to convert the number of signal events n90% CL
sig into a sensitivity to a SAν flux, the

following expression is used:

dΦ90% CL
νµ

(E)

dE
=

n90% CL
sig

n̄theorsig

dΦtheor
νµ
(E)

dE
= C90 ·

dΦtheor
νµ
(E)

dE
, (3)

The first member of the equation stands for the flux upper limit/sensitivity. The second and
third members of the equality contains the theoretical flux model multiplied by a scale factor C90.
This scale factor is defined as the ratio between n90% CL

sig , and the expected number of signal events in
ANTARES during the data taking period (T) for a given theoretical model. The expected number of
signal events n̄theorsig is computed integrating the product of the theoretical model flux by the effective
area of the detector (Aeff) over the energy range of interest (Eq. 4):

n̄theorsig = T
∫ ∑

l∈νν,ν̄µ

(
dΦtheor

l
(E ′)

dE
Aeff
l (E

′)

)
dE ′. (4)

4. Results

Asmentioned in section 3.1, the base-line case is the combination of the cosmic ray modelH3a
[7] with the solar density profile Ser+Stein [9]. Neutrino oscillations and normal mass ordering,
from best fits values, is assumed [1, 13]. The Sun is considered as a point source. Only νµ and ν̄µ
arriving at the detector are considered.

Figure 2 shows the event distribution, within the RoI of 30◦ from the Sun, for the data (dots)
alongside with the expected signal distribution (blue histogram) and background (green histogram)
events. The signal distribution has been magnified 100 times for comparative reasons. No excess
in data over the expected background is observed.
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PRELIMINARY

Figure 2: Event distribution as a function of the angular separation Ψ� around the source. The expected
signal, in blue, is scaled for visibility. The expected background (green histogram) is shown with the data.

The expected number of signal events for this model within the RoI in the 3022 days of lifetime
is n̄theorsig ≈ 0.366. The expected number of background events is n̄MC

bkg = 470. The number of events
in the data sample in the RoI is 461.

Model Source Shape n90% CL
sig, sens n90% CL

sig, up-lim p-val

H3a-Ser+Stein [7, 9]
Point Source 2.70 3.15 0.41
Disk 2.80 3.25 0.43
Ring 3.45 3.45 0.5

Table 1: Sensitivities and 90% CL upper-limits for the base-line Solar Atmospheric neutrino model, and for
three different Sun shapes considered. The last column is the p-values corresponding to the quoted upper
limits.

After the data unblinding, the 90% CL upper limit obtained is n90% CL
sig = 3.15, and the flux

scale factor C90 = 8.6. The scale factor value tells us that in order to exclude the model, we would
need a flux 8.6 times larger. The final sensitivity and upper-limit obtained for the H3a-Ser+Stein
model is shown in Fig. 3 as a comparison with the theoretical flux model itself and with the Ice
Cube latest result [17].

The Gaisser-Stanev-Tilav 4-generation cosmic ray model, refered as GST4, and the Grevesse
& Sauval solar density profile, refered as Ser+GS98, which are already included within the
solar_crnu package, have been tested and the results are within a 2% difference with respect
to the results shown above.

6
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PRELIMINARY

Figure 3: ANTARES upper limit (solid red) for 11 years of data, assuming the Sun as point like source for
the base-line model H3a-Ser+Stein (solid blue line). For comparison, the 11 years ANTARES sensitivity
(red dashed) and Ice Cube upper limit for 6 years [17] (solid black) are also shown. The ANTARES 90%
expected events falls within the plotted energy range.

5. Conclusion

An unbinned likelihood analysis has been performed with 11 years of ANTARES data. The
total analysis lifetime is 3022 days. No signal evidence was observed, instead a 90% CL energy
flux upper limit has been established to be about 7× 10−11 [TeV cm−2 s−1] at 1 TeV neutrino energy
with a p-value 0.41.
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