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1. Introduction

In its 13 years of operation, the ANTARES neutrino telescope [1] has contributed to multiple
searches for neutrinos from point sources, such as blazars, gamma ray bursts or fast radio bursts.
Angular resolution and detector pointing are key parameters for this type of study since typically
only a small number of signal events are searched for within a consistent background. The spatial
correlation of the signals with the known position of the potential source allows the signal-to-
background ratio to be drastically reduced. For this reason, a neutrino telescope needs the smallest
possible angular resolution and the best possible absolute pointing. This type of detectors cannot
use standard candles, such as electromagnetic telescopes, but can exploit the absorption of cosmic
rays by celestial objects, such as the Moon or the Sun, to estimate their performance.

In this contribution, we will focus on the measurement of the so-called “Sun shadow” with the
ANTARES detector. If cosmic rays on their way to the Earth intercept the Sun, they cannot pass
through it. Thus, an observer on the Earth notices a deficit of cosmic rays in the direction of the
Sun, so the Sun shadow can be used as a calibration source for a neutrino telescope.

Between 2006 and 2008, the 12 lines of the ANTARES detector were deployed 40 km off the
coast of Toulon, France. Each detector line has 25 storeys and each storey houses three 10-inch
Photo-Multiplier Tubes (PMTs) inside pressure-resistant glass spheres (the Optical Modules). Each
line is 450 m long and the first storey is 100 m above the sea floor. The lines are connected to the
shore by an electro-optical cable from the junction box to the shore station.

The neutrino detection mechanism is based on the interaction of neutrinos in the proximity of
the detector producing charged particles. These particles have velocities higher than the speed of
light in the water, resulting in the emission of Cherenkov light which can be detected by the PMTs
of the telescope. By measuring the time and position of the signals (hits), the trajectory of the
charged particle can be reconstructed (event) and thus the direction of origin of the neutrino.

Typically, upward-going events are studied, since downward-going events are dominated by
the contribution of atmospheric muons, which is why the PMTs of the detector points downwards
at an angle of 45◦. However, in this study we will focus on the measurement of downward-going
atmospheric muons, as we want to study the effect of the absorption of cosmic rays by the Sun.

The shadow of the Sun or the Moon has already been used by several cosmic ray detectors
and the IceCube neutrino telescope to estimate the detector pointing performance [2], while the
ANTARES collaboration has already presented a study of theMoon shadow and found a significance
of 3.5 σ by analysing a data sample corresponding to a livetime of 3128 days [3].

2. Event selection criteria optimisation

The selection criteria optimisation is based on a Monte Carlo (MC) that features downward-
going muon events which are generated with the MUPAGE code. A cylinder (can) surrounding the
active volume of the detector, 650 m high, with a radius of 290 m, is considered in the simulation,
where muons are generated according to parametric formulas that allow to calculate the flux and
the angular distribution of underwater muon bundles [4]. The simulation includes all the steps of
the muon detection: propagation of muons in the surroundings of the detector, the emission of
Cherenkov light, the light propagation to the PMTs and the digitalisation of the signals [5].
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The data of the ANTARES telescope are divided into time samples lasting several hours,
called runs. For each of these runs, the environmental conditions and the detector configuration
are recorded, so that the exact data acquisition conditions can be reproduced in the Monte Carlo
simulation, the so-called run-by-run simulation [6].

The number of atmospheric muons is extremely large, so we typically choose to generate them
with a reduced statistic, in our case 1/3. However, in this analysis we can increase the statistic by
using the additional zones approach. Instead of focusing only on the region of space where the Sun
is at a given instant, one can add additional “artificial suns” by simply shifting the position of the
Sun by certain time interval and eliminating the muons generated in these directions, as it is also
done in the Monte Carlo for the real position of the Sun. By shifting the position of the Sun by
2 hours, 11 additional zones were obtained, so that the final statistics of our simulation is 4 times
larger than in the data.

The optimisation of the selection criteria is performed exploiting two parameters: Λ, the quality
of the reconstruction (based on likelihood optimisation of the reconstruction), and β, the angular
uncertainty on the reconstructed track direction [7]. In order to exclude the region close to the
horizon, where the muon statistic is lower due to muon longer path in Earth atmosphere, tracks with
elevation below 15◦ are excluded.

The hypothesis test approach is used to determine the selection criteria which maximise the
sensitivity to the Sun shadow effect. The procedure is based on the production of two MC samples.
In the first one no absorption of cosmic rays by the Sun is simulated (hypothesis H0), while in the
other one all muons coming from the direction of the Sun (radius = 0.26◦) are eliminated from the
simulation (hypothesis H1), thus simulating the effect of the Sun shadow. The angular distribution
of the events is now projected on a histogram as a function of the distance from the Sun centre
(histogram bin size=0.4°). Each bin is normalised according to the corresponding area, resulting in
an event density.

Assuming that the event population in each bin asymptotically follows a Gaussian probability
distribution, two test statistic can be defined for the two different hypotheses (H0 and H1)

λ0 =

Nbins∑
i=1
[
(ni0 − µi)

2

σ2
µ,i

−
(ni0 − νi)

2

σ2
ν,i

],

λ1 =

Nbins∑
i=1
[
(ni1 − µi)

2

σ2
µ,i

−
(ni1 − νi)

2

σ2
ν,i

],

(1)

with µi (νi) the expected number of events in the i-th bin under H1 (H0) hypothesis, σµ,i (σν,i)
the error in the i-th bin under H1 (H0). The values of n1 (n0) are derived according to a Poisson
distribution with expectation values equal to µi (νi). The two test statistic λ0 and λ1 corresponds to
χ2 differences.

The two test statistic are computed for 106 pseudo-experiments for each set of selection criteria
assumed and the one that maximise the sensitivity is selected. For reference, Fig. 1 shows the
distribution of the two test statistic λ0 and λ1 for the best selection criteria (Λcut = −5.9 and
βcut = 1.1◦).

The significance is computed evaluating the p-value of the λ0 distribution (null hypothesis, H0)
corresponding to the median of the λ1 distribution, for which 50% of the pseudo-experiments under
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Figure 1: Distribution of the test statistic λ for the two hypotheses, H0 (black curve) and H1 (red curve),
obtained for the best selection criteria. The dashed area represents the fraction of the distribution (50%)
where H1 hypothesis is correctly identified. The blue area corresponds to the expected median significance
(3.4σ) to reject the H0 hypothesis in favour of the H1 hypothesis.

the H1 hypothesis (presence of the Sun shadow) are correctly identified. For the best selection
criteria the p-value is equal to 7.4 × 10−4, corresponding to a significance of 3.4σ. Fig. 2 shows
the dependance of the significance on the cuts applied on Λ and β.
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Figure 2: Expected significance of the Sun shadow effect based on pseudo-experiment approach, as a
function of cut on Λ and β (Λcut and βcut). The red point represents the best selection criteria (Λcut = −5.9
and βcut = 1.1◦). The expected significance for the selected set of cut values is 3.4σ.

3. Analysis of the 2008-2017 data sample

The ANTARES data sample, corresponding to 2925 days of livetime collected in 10 years
(2008-2017), counts 2.6 × 106 events reconstructed as downward-going muons with the standard
ANTARES reconstruction chain. After the application of the selection criteria described in the

4



P
o
S
(
I
C
R
C
2
0
2
1
)
1
1
2
4

P
o
S
(
I
C
R
C
2
0
2
1
)
1
1
2
4

ANTARES observation of the cosmic ray shadow of the Sun M. Sanguineti

previous section 6.5 × 105 events survived. As previously described, the events are projected on
a histogram as a function of the distance from the Sun centre (histogram bin size=0.4°) obtaining
Fig. 3.
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Figure 3: Muon event density as a function of the angular distance δ from the Sun centre (data sample
2008-2017). The red lines represents the histogram fit with Eq. 2. The shaded area corresponds to the Sun
radius (0.26◦).

The data distribution is fitted with the function

f (δ) =
dN
dΩ
= k(1 −

R2
Sun

2σ2
res

e
− δ2

2σ2
res ), (2)

where Ω is the solid angle of the concentric ring around the Sun centre, k is the average muon
event density in the H0 hypothesis (fitted value k = 2086 ± 3), RSun is the average angular radius of
the Sun (0.26◦) and σres is the width of the Gaussian dip (fitted value σres = 0.59◦ ± 0.10◦). The
number of absorbed events in the Sun shadow dip is Nabs = kπR2

Sun = 443 ± 1.
The influence of the finite-size radius of the Sun in the estimation of the detector resolution is

estimated though dedicated pseudo-experiments. The discrepancies obtained between the assumed
detector angular resolutions and the fitted values of the Gaussian width are negligible with respect
to the statistical uncertainty (below 10% for the assumed angular resolution values above 0.35◦)
[8].

In the hypothesis of no shadowing effect (H0), the data distribution in Fig. 3 would follow the
profile of Eq. 3,

dN
dΩ
= k; (3)

the Sun shadow significance can be estimated fitting the event density according the two different
hypotheses defining the test statistic −λ = χ2

0 − χ
2
1 . For the 2008-2017 sample the significance

of the shadowing effect is 3.7σ. Unfortunately the data sample is not sufficient to study how the
significance depends on the activity of the Sun.
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The measurement of the Sun shadow allows also an estimation of the detector pointing per-
formance. For this purpose the data sample is projected on a 2D-histogram as a function of
x = (αµ − αSun) × cos(hµ) and y = hµ − hSun, where αµ, αSun are the azimuthal coordinates and
hµ, hSun are the elevation angles of the reconstructed track and the Sun, respectively. The bin size
is 0.4◦ × 0.4◦ spanning the range [−10◦, 10◦].

First, in the H0 hypothesis (no shadowing effect), the background distribution is assumed as

p2(x, y; k) = k0 + k1x + k2x2 + k3y + k4y
2, (4)

while, in the H1 hypothesis (presence of the shadowing effect), the data distribution is approximated
with a function obtained by subtracting from p2(x, y; k) a two-dimensional Gaussian function:

G(x, y; Ash, xs, ys) =
Ash

2πσ2
res

e
−
(x−xs )

2+(y−ys )2

2σ2
res , (5)

where Ash is the amplitude of the deficit caused by the shadowing effect (free parameter), (xs, ys)
is the assumed position of the Sun. The width of the Gaussian function is assumed equal in both x
and y direction (σres = 0.59◦).

The procedure applied foresees the assumption of different Sun shadow centre positions span-
ning the whole region of interest with a step size of 0.1◦. The nominal Sun position is O ≡ (0◦, 0◦).
Then the test statistic λ(xs, ys) is computed as

λ(xs, ys) = χ2
H1
(xs, ys) − χ2

H0
, (6)

where χ2
H0

is the χ2 value obtained from the fit with Eq. 4, which is a constant value for all the
bins of the histogram, and χ2

H1
(xs, ys) is the χ2 value obtained from the fit with the function used

to describe hypothesis H1, p2(x, y; k) − G(x, y; Ash, xs, ys).
The result is provided in Fig. 4 where the values of the test statistic λ(xs, ys) as a function of

the assumed Sun position is shown. The minimum value is λmin = −13.7 in the position λ(xs, ys) =
(0.2◦, 0◦). The values of λ(xs, ys) and Ash for the nominal Sun position are λO = −13.1 and
AO = 54±15. As the−λ follows the distribution of a χ2 with one degree of freedom, the significance
to reject the no-Sun hypothesis can be computed (p-value= 3.1 × 10−4, significance=3.6σ)

The test statistic λ(xs, ys) behaves as a bi-dimensional profile-likelihood, with Ash treated as
the nuisance parameter and the interval corresponding to a desired confidence level (CL) is obtained
for λ(xs, ys) ≤ λcut = λmin + Q, where Q is the quantile for the joint estimation of two parameters
(Fig. 5).

4. Conclusions

This contribution presented the study of the Sun shadowing effect in 2008-2017 ANTARES
data sample (2925 days of livetime).

The two strategies applied in this analysis achieved compatible results showing a significance
of the phenomenon equal to 3.7σ using the one-dimensional approach. Besides the ANTARES de-
tector is designed tomaximise the angular resolution for upward-going track (PMTs are pointing 45◦

6
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Figure 4: The distribution of the test statistic λ(xs, ys). The minimum value λmin = −13.7 is found at
(0.2◦, 0◦) point (white dot).
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Figure 5: Contours corresponding to different confidence levels (red: 68.27%; yellow: 95.45%; green:
99.73%). The white dot indicates (0.2◦, 0◦) point for which a minimum value of λmin = −13.7 is obtained.
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below the horizon), this study demonstrated that the ANTARES angular resolution for downward-
going muons is 0.59◦ ± 0.10◦. This results is compatible with the previous Moon shadow analysis
(0.73◦ ± 0.14◦) [3].

The pointing performance study did not evidence any significant deviation from the expecta-
tions, confirming the results of the Moon shadow study [3].
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