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The TAROGE-M observatory is an autonomous antenna array on the top of Mt. Melbourne
(~2700 m altitude) in Antarctica, designed to detect radio pulses from ultra-high energy (over
10'7 eV) air showers coming from near-horizon directions. The targeted sources include cosmic
rays, Earth-skimming tau neutrinos, and most of all, the anomalous near-horizon upward-going
events of yet unknown origin discovered by ANITA experiments. The detection concept follows
that of ANITA: monitoring large area of ice from high-altitude and taking advantage of strong
geomagnetic field and quiet radio background in Antarctica, whereas having significantly greater
livetime and scalability.

The TAROGE-M station, upgraded from its prototype built in 2019, was deployed in January
2020, and consists of 6 log-periodic dipole antennas pointing horizontally with bandwidth of
180-450 MHz. The station is then calibrated with drone-borne transmitter, with which the event
reconstruction obtained ~0.3° angular resolution. The station was then smoothly operating in
the following month, with the live time of ~ 30 days, before interrupted by a power problem,
and its online filtering has identified several candidate cosmic-ray events and sent out via satellite
communication. In this paper, the instrumentation of the station for polar and high-altitude
environment, its radio-locating performance, the preliminary result on cosmic-ray detection, and

the future extension plan are presented.
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1. Introduction

The origin and characteristics of ultra-high-energy (UHE, above 10'®eV) cosmic rays and
neutrinos have been long-standing puzzles. An effective way to observe UHE cosmic rays is
to detect the radio pulses emitted by the extensive air showers they initiate, mainly through the
geomagnetic emission created when electrons and positrons in air shower are deflected under the
geomagnetic field. The radio detection technique has been established over past two decades,
capable of inferring parameters of primary particles such as direction, energy and composition with
good precision (see [1] for a review). The technique can also be applied to detecting air showers
initiated by the delay of tau lepton produced when UHE Earth-skimming tau neutrinos interact with
the rock via charged-current interaction. A radio observatory at high elevation can monitor large
volume of Earth’s crust as neutrino target, and hence a efficient detector for both UHE cosmic rays
and tau neutrinos. The ANITA experiment [2, 3], a stratospheric balloon-borne antenna array using
200-1000 MHz frequency band in Antarctica, has finished four flights and observed not only dozens
of cosmic rays but also 4 upward-going anomalous events with tau-neutrino like signature, which
origin calls for further confirmation. However, the short live time of balloon experiment typically
of a month makes it harder to increasing the statistics significantly. As an alternative, locating
radio detectors at high mountains [4, 5] with clear view of the horizon, though with less detection
volume, can have lower energy threshold and much greater live time and scalability, and thus can
obtain competitive sensitivity and beyond relatively easily in principle. Antarctic mountains are
ideal places for radio detection of near-horizon UHE air showers for the strong (>60 uT) and nearly
vertical geomagnetic field and the quiet radio-frequency (RF) background. Therefore, we built an
prototype antenna station in 2019 [4] on the top of Mt. Melbourne (74°20"55.88"" S, 164°41’35.38”
E), an Antarctic volcano of 2720 m high, where the site is accessible with helicopter from Korean
Jang Bogo (JBG) research station 30 km away at southwest. In this paper, the upgrade and the
development since then are reported, and as a demonstration of air-shower detection, a preliminary
search for UHE cosmic-ray signals is also presented.

2. TAROGE-M Station Design and Operation Summary

The first TAROGE! antenna station on Mt. Melbourne (TAROGE-M, Fig. 1a) was upgraded
from its prototype and deployed in January 2020. The station is designed for detecting radio pulses
from ultra-high energy air showers coming from near-horizon directions, based on the experiences
of TAROGE stations on mountains in Taiwan [6] and ARIANNA-HCR (hereafter HCR) station
in Antarctica [7]. The receiver consists of 6 log-periodic dipole antennas (LPDA) pointing to the
horizon with 7 dBi gain above 180 MHz, with four of antennas horizontally polarized (Hpol) to align
with the polarization of geomagnetic emission, one vertically polarized (Vpol) for the polarization
measurement, and one also Hpol but pointing to opposite direction for vetoing any potential noise
from other automatic stations? behind several hundred meters away. The received signal is then
passed through 180-450 MHz band-pass filter , a notch filter at 360 MHz, and two cascaded low-

ITAiwan Radio Observatory for Geomagnetic Emission [6], an acronym named after Taroko national park featuring
mountains and gorges nearby the stations in eastern Taiwan.
2including a telecommunication, a weather, and a seismic stations.
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Figure 1: Left: TAROGE-M station on the top of Mt. Melbourne in Antarctica. Hpol antennas are mounted
on 3 m tower, pointing to northern horizon, with ~ 8.5 m separation between lower three towers, and ~ 19 m
between top (with veto antenna) and bottom ones, whereas the Vpol one is placed under the east Hpol.
Right: Markers and error bars indicate the mean and the error of mean, respectively, of the distribution of
received power at 190-240 MHz band for each channel, with total 21, 919 forced-trigger events, as function
of local sidereal time. Curves are the simulated Galactic noise with a fitting of receiver noise power for
constant offset. The distribution of veto channel is out of phase from others because of its opposite pointing
to the back side.

noise amplifiers (LNA) with total 64 dB gain. The receiver bandwidth is chosen based on previous
RF background survey in 2019 for suppressing narrow-band noise. The data acquisition (DAQ)
is done by a 8-channel SST board [8] same as those used in ARIANNA experiment [9], which
performance has been proven with years of operation at Ross Ice Shelf and South Pole. The SST
board is set to 1 GHz sampling rate, and storing 256 samples with 12-bits dynamic range for each
channel. A trigger is formed by two stages: the channel-level trigger requires that the received
waveform passes both positive and negative thresholds within 5 ns, and then the station-level one
requires 3-out-of-4 coincidence of Hpol channel triggers within 32 ns for the signals to be digitized
and recorded. An additional real-time narrow-band noise rejection is applied by computing the
ratio of the peak magnitude of the FFT spectrum to the sum of the rest of spectrum, and an event
is discarded if the ratio exceeds a given threshold of 0.3 at any non-veto channel. A single-board
computer (BeagleBone Black) is added for online filtering (more details in Sec. 4.2) SST data to
prioritize Hpol-dominant impulsive events to be transferred back to the server at northern hemisphere
via Inmarsat satellite communication with limited data size. The computer also monitors the entire
system, and can be remotely accessed and configured.

The system, with total power consumption less than 20 W, is powered by eight 30 W solar
photo-voltaic panels and 150 Ah sealed lead-acid batteries, designed for operation throughout
austral summer from August to April, and a wind turbine was also installed for investigating the
feasibility of extended operation in winter. All electronics devices are contained in RF shielding
boxes inside a thermally insulated enclosure on the ground, which keeps the internal temperature
at 10-30 °C during operation, roughly 50 °C higher than the ambient temperature.

The station was continuously operating since the deployment on Jan 25, and the battery charging
was stopped after Feb 21, probably due to sunlight got blocked by icing accumulated on solar panels
during snow storm, causing the system ran out of power on Feb 24. However, the system failed in
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cold start, leading to total live time of about 30 days, and the problem was later reproduced in the
lab test and identified as malfunctioning DC-to-DC converter under low temperature.

During operation, the trigger threshold was adjusted between 4 to 7 times of RMS voltage
(typically 15 mV), resulting in typical event rate of 1072—1073 Hz. There are periods of high event
rate of 1-10 Hz with each one lasting for a few hours to a few days, correlated with bad weather on
the mountain, a similar phenomenon as observed by HCR station [7]. These “high-wind” events
during these periods account for the majority of impulsive events in TAROGE-M data.

In 2020-2021 season, the hardware of the station was inspected and no major damage was
found over the winter, but because of the halt in scientific research at JBG station due to COVID-19
pandemic, the DAQ system was taken back to lab for maintenance, upgrade and accessing full data.

3. In-Situ Calibration

The source direction of an event is an important discriminator for neutrino and cosmic-ray
signals, and is reconstructed by the time difference of arrival (TDOA) of signals between Hpol
antennas, following an interferometric method based on waveform cross-correlation, similar to that
in [10]. Therefore, the calibration of antenna positioning and response of each channel is crucial
for locating the sources. The antenna station was fast surveyed with photogrammetry and geo-
referenced by differential GPS (DGPS) right after the deployment. The photos are post-processed
with Pix4DMapper software [11] to generate 3D station model, and a positioning precision better
than 1 cm is obtained.

3.1 Calibration with Galactic noise

To monitor the radio-frequency (RF) background, forced trigger at every 100 seconds was
enabled to obtain unbiased noise samples throughout the operation. The Galactic noise variation in
these event can sever as in-situ calibration of receiver response, with analysis as in [12]. As shown
in Fig. 1b, the received power in 190-240 MHz band of all channels vary periodically with cycle
of a sidereal day. This is consistent with the simulation consisting of Galactic noise modelled with
LFMap [13] combining the antenna response in free space modelled with HFSS [14], measured
electronics response, and a fitting of receiver noise power for constant power offset. Except the
power of Vpol channel is less undulating than the expected one, which suggests antenna response
got modified due to adjacent Hpol antenna on its top, the overall agreement between observation
and expectation shows the modelled response is reliable for further analysis.

3.2 Calibrating event reconstruction with drone-borne pulser

A drone-borne calibration pulser system was developed [15] to calibrate and measure the
performance of TAROGE-M event reconstruction, especially at near-horizon directions which are
otherwise difficult to access and scan by other means. The drone pulser consists of a pulser module
which pulse strength is configurable for stepped scan, a broadband Hpol biconical transmitter
antenna, a DPS module with centimeter positioning accuracy, and a logger recording the pulsing
timestamp, strength and position. Two drone flights were conducted on Jan 30, making grid scan at
a distance of ~500 m in front of the station (Fig. 2), with each flight lasting for about 15 minutes.
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Figure 2: expected track (blue) of first (left) and second (right) drone pulser flights recorded by DGPS
and the reconstructed one (orange) after calibration. The elevation angle is 0° in horizontal direction, and
azimuth angle is defined as 0° at geographic north and positive to west, where LPDAs point to ~10°.

The pulser was set to 5 Hz pulsing rate and 7 dB power dynamic range for characterizing trigger
efficiency, and there are nearly 6000 pulser events recorded by the station.

The station orientation, the internal delay of receivers, and the phase center of LPDA antennas
are calibrated by minimizing the squared sum of the difference between the observed (cross-
correlated) TDOA and the expected one over all selected events. A set of 593 high-quality pulser
events are selected as calibration samples, whereas the rest of events are used to verify the result.
The selected events have high signal-to-noise ratio (SNR), with position within the main lobe of
receiver antennas where their responses are not much different, and at elevation angle >3°, below
which the effect of reflected signal from the ground becomes not negligible.

The event reconstruction proceeds as following: waveforms are first band-pass filtered at
180-330 MHz and interpolated by a factor of 20. Then waveforms have both the receiver and the
transmitter responses deconvolved. Deconvolved Hpol waveforms are cross-correlated with each
other, with a 10 ns time window applied around the peak of each one to reduce the bias from noise.
For every antenna pair, the correlation coefficient as function of hypothetical TDOA is obtained, and
the reconstructed direction is the one which TDOAs give the highest sum of correlation coefficients
over all pairs, found by grid search, expressed in zenith 6 (or elevation) and azimuth angles ¢.

The result of calibrated reconstruction is shown in Fig. 2 with good agreement, but mis-
reconstruction happened at region around elevation angle below 2° and azimuth of 5-40°, biasing
toward higher elevation at 3—5°. One possible cause is that the direct pulses are interfered with
the reflected signals from the ground and objects around, as found by HCR and other TAROGE
stations [6, 7]. Such effect can be alleviated later, by mapping and subtracting the response of
signal propagation at different angles through more scans with drone pulser, for example, using the
technique described in TAROGE analysis [6]. If the biased region is excluded, TAROGE-M has an
angular resolution of 0.2° in azimuth and 0.3° in elevation.
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Auger CR spectrum, live time 30.00 days: 17.1 events
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Figure 3: Left: expected cosmic-ray area acceptance of TAROGE-M station versus energy for different
zenith angles. Right: expected angular distribution of cosmic ray events, assuming Auger CR spectrum [17]
and 30-day exposure. The shaded area shows the uncertainty due to shower-by-shower variation.

4. Cosmic Ray Search and Detection Simulation

4.1 Simulation and Expected Event Distribution

To estimate the event rate and angular distribution of cosmic rays, Monte-Carlo simulation used
in [7, 12] was modified for TAROGE-M, while the neutrino acceptance was estimated previously
[4]. Radio emission of proton-initiated air showers is simulated with CoREAS [16], and a set
of 2,041 showers that were originally for HCR station [7] are used as an approximation, as both
stations have similar geomagnetic field but receive the electric field at 30 m altitude rather than
at 2700 m for TAROGE-M. These showers have energies spanning 30 PeV and 30 EeV and angles
over all forward-coming directions to the station. The simulated electric field is convolved with the
receiver response (Sec. 3.1) to generate received waveforms, and then passed to simulation of SST
trigger as described in Sec. 2 to get detection efficiency. Cosmic ray flux measured by Pierre Auger
Observatory [17] is used to calculate the event rate.

The expected cosmic-ray area acceptance and angular distribution of TAROGE-M are shown
in Fig. 3, assuming 60 mV (~ 40) trigger threshold. The detection threshold is around 300 PeV,
and the majority of events come from zenith angle of 60—85° and energy of 300 PeV to 3 EeV, with
total 17 events expected in 30 days.

4.2 Cosmic ray search and background rejection

A preliminary search for UHE cosmic-ray signals is conducted on the full 30-day data in 2020.
There are 1,257, 122 recorded RF-trigger events, where the majority of them are high-wind events
(see Sec. 2) with common characteristics that one channel (mostly the veto one) has particularly
strong impulse than others and usually has high power at stopband. On the other hand, air-shower
signals are expected to be relatively rare, Hpol-dominated, and broadband with higher power at
lower frequencies, and of similar strength between receiver channels.

Given the above properties, the following event selection criteria are implemented in the online
filtering (in Sec. 2), with the threshold set empirically based on forced-triggered events. The power
at 180-240 MHz and 280-330MHz of an event is defined as its lower passband power, and a
threshold of 3.6 dB on the averaged Hpol to Vpol power ratio was required. This is a powerful cut to
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run event timestamp (UTC) ave. x-.cor azimuth (°) | zenith (°) Hv pf) wer
coeflicient ratio

25 54906 | 2020/01/31 05:45:10 0.81 -62.2 25.5 2.4

26 50916 | 2020/02/07 17:11:37 0.88 46.7 66.6 6.4

26 68712 | 2020/02/08 04:36:31 0.84 -14.8 42.7 4.7

26 | 244803 | 2020/02/10 20:33:35 0.80 14.8 78.5 3.3

28 69900 | 2020/02/22 22:51:36 0.86 6.1 49.7 4.8

Table 1: Summary of cosmic-ray candidate events found in TAROGE-M 2020 data.

RF trigger- run 26 seq 169 event 50916 time: 2020-02-07 17:11:37 RF trigger- run 28 seq 233 event 69900 time: 2020-02-22 22:51:36
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Figure 4: received waveforms (top panels) and power spectra (bottom) of two cosmic-ray candidates.

reject unpolarized thermal noise and select CR. To reject potential satellite noise at 240-280 MHz,
the Hpol-averaged power ratio of the lower passband to this band higher than 4 dB is required .
An event is rejected as high-wind noise if any of channel has power ratio of lower passband to
130-150 MHz band lower than 1.4 dB (stopband leakage), or if the difference of lower passband
power between any two Hpol channels is 7.5 dB (channel similarity). Lastly, lower passband power
ratio of Hpol average to veto channel more than 1 dB is required to reject noise from the back side.

In offline analysis, all events are reconstructed (as in Sec. 3.2 but without deconvolution)
assuming plane wave, and events are selected if the average cross-correlation coefficient (between
[0,1]) > 0.7 and at the front side of station, to further suppress high-wind events. A temporal
cluster cut on selected events requires that a candidate should have no adjacent events within time
window of +600 seconds. After all selections are applied, 5 cosmic-ray candidates are identified
(Table. 1), and two of them are shown in Fig. 4. The zenith distribution is consistent with the
simulation, but the number is lower than the expected one of 17, as the cuts applied here are not
optimized yet. But the ratio of the observed event rate to that of HCR with similar cuts is consistent
with what simulation predicted. The efficiency estimate and the optimization of selection cuts are
in progress. Template matching will also be used in CR search as in [3, 12].
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5. Future Works

The primary task of TAROGE-M upgrade is to fulfil the full-time operation in summer for fully
taking its advantage, so problematic power components will be replaced with military-grade ones.
Two more Hpol channels will be installed to improve the angular resolution of event reconstruction.
We also plan to install long-range Wi-Fi link from Mt. Melbourne to JBG station for broader data
bandwidth, and a ground-based pulser to monitor the reconstruction performance below the horizon
over the operation. More stations are expected to be built on the mountain in the next couple of
years to increase the area acceptance for confirming the discovery of ANITA’s anomalous events.
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