The Giant Radio Array for Neutrino Detection (GRAND) Project

Kumiko Koteran, on behalf of the GRAND Collaboration
(a complete list of authors can be found at the end of the proceedings)

Sorbonne Université et CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France

Vrije Universiteit Brussel (VUB), Dienst ELEM, Pleinlaan 2, B-1050, Brussels, Belgium
E-mail: kotera@iap.fr

The GRAND project aims to detect ultra-high-energy neutrinos, cosmic rays and gamma rays, with an array of 200,000 radio antennas over 200,000 km², split into ~ 20 sub-arrays of ~ 10,000 km² deployed worldwide. The strategy of GRAND is to detect air showers above 10¹⁷ eV that are induced by the interaction of ultra-high-energy particles in the atmosphere or in the Earth crust, through its associated coherent radio emission in the 50–200 MHz range. In its final configuration, GRAND plans to reach a neutrino-sensitivity of ~ 10⁻¹⁰ GeV cm⁻² s⁻¹ sr⁻¹ above 5 × 10¹⁷ eV combined with a sub-degree angular resolution. GRANDProto300, the 300-antenna pathfinder array, is planned to start data-taking in 2021. It aims at demonstrating autonomous radio detection of inclined air-showers, and study cosmic rays around the transition between Galactic and extra-Galactic sources. We present preliminary designs and simulation results, plans for the ongoing, staged approach to construction, and the rich research program made possible by the proposed sensitivity and angular resolution.

37th International Cosmic Ray Conference (ICRC 2021)
July 12th – 23rd, 2021
Online – Berlin, Germany

*Presenter
GRAND is a proposed large-scale observatory designed to discover and study the sources of ultra-high-energy cosmic rays (UHECRs). GRAND will detect the radio signals made in the Earth’s atmosphere by ultra-high-energy (UHE) cosmic rays, gamma rays, and neutrinos. The sub-degree angular resolution of GRAND will make possible the discovery of the first point sources of UHE neutrinos. We present the detection concept, the expected performances, and the rich science case of the experiment, as well as the different stages planned to achieve the ultimate array.

1. Detection concept

GRAND is designed to detect inclined extensive air-showers (EAS) produced by UHE cosmic particles [1]. While entering the atmosphere, UHE particles produce EAS, which in turn generate electromagnetic emission, mainly through the deflection of charged particles in the shower by the geomagnetic field. UHE tau neutrinos can also produce such electromagnetic signals by interacting with the Earth crust, giving birth to a tau lepton that can typically traverse a few tens of km of rock before exiting in the atmosphere and decaying, hence generating an Earth-skimming EAS. The geomagnetic emission is coherent in the 10s of MHz frequency range, generating short ($< 1 \mu s$), transient radio pulses, with high enough amplitudes for the detection of showers with energy $\gtrsim 10^{16.5} \text{ eV}$ [2, 3].

GRAND will build on the mature radio-detection experience of past and existing radio-detection experiments (AERA, CODALEMA, LOFAR, TREND, Tunka-REX). These instruments have focused on vertical EAS. Because of relativistic effects, the radio emission is strongly beamed forward, with an opening angle corresponding to the Cherenkov angle $\theta \lesssim 1^\circ$. For vertical EAS, the radio-signal propagates over the ~ 10 km thickness of the atmosphere, and leads to a footprint on the ground of few $100s \text{ m}^2$. The sampling of such a signal necessitates a dense radio array. For very inclined air-showers on the other hand, the radio emission can propagate over several tens of kilometers, inducing a footprint on the ground of several squared kilometers, which can be sampled with a sparse (kilometer-step) array.

Radio antennas are ideal components to build giant arrays, being cheap, robust and scalable. In its final configuration, GRAND will consist of of 200,000 antennas over 200,000 km2, split into ~ 20 sub-arrays of 10,000 antennas located in different locations across the Earth. The locations of the sub-arrays will be chosen in radio-quiet environments with relatively easy access, and favorable topographies. An ideal topography consists of two opposing mountain ranges, separated by a few tens of kilometers. One range acts as a target for neutrino interactions, while the other acts as a screen on which the ensuing radio signal is projected. Simulations show that ground topographies inclined by few degrees only induce detection efficiencies typically three times larger than those obtained for flat areas [4].

2. Expected Performances

The development of a GRAND end-to-end simulation chain and of several reconstruction tools dedicated to inclined EAS have enabled to assess the performances of GRAND for UHE neutrino, cosmic ray, and gamma-ray detection. The simulation chain comprises a 3-D Monte-Carlo sampler
of tau leptons generated by ν_τ interactions underground (DANTON [6]), a semi-analytical radio-signal fast computation tool (Radio-Morphing [7, 8]), and an antenna response module (NEC4 [9]). The final step is the detector trigger simulation. Our trigger condition requires ≥ 5 units in one 9-antenna square cell to be triggered, and the peak-to-peak amplitude of the voltage signal at the output of the antennas to be $\geq 30[75] \mu V$ (twice the expected stationary background noise in the 50 – 200 MHz frequency range) in the aggressive [conservative] scenario.

This simulation chain was run over a 10, 000 km2 area, with 10, 000 antennas deployed along a square grid of 1 km step size in a basin surrounded by high peaks of the TianShan mountain range in China. The 10-year 90% C.L. GRAND sensitivity limit (Fig. 1, left) is scaled from the simulated region to 200, 000 km2 (GRAND200k). The integrated limits correspond to the Feldman-Cousins upper limit per decade in energy at 90% C.L., assuming a power-law neutrino spectrum $\propto E_{\nu}^{-2}$, for no candidate events and null background. The 10-year GRAND integrated sensitivity limit is $\sim 10^{-10}$ GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$ above 5×10^{17} eV [1].

For UHECR detection, GRAND will be fully efficient above 10^{18} eV and sensitive to cosmic rays in a zenith-angle range of 65° – 85°. The geometrical aperture of the experiment will be 107, 000 km2 sr. However, when including events with shower cores outside the instrumented area and when taking trigger conditions into account, UHECR air-shower simulations indicate that GRAND would have a 4 – 5 times higher exposure. Figure 2 (left) presents an example of the

Figure 1: Left: Differential and integrated neutrino sensitivity limits calculated from the 10, 000 antennas simulation ("GRAND10k", pink area) and the extrapolation for the 20-times larger GRAND array ("GRAND200k", maroon line). The gray region represents the all-flavor cosmogenic neutrinos flux expectations derived from the results of the Pierre Auger Observatory [5]. Adapted from [1]. Right: GRAND point source sensitivity limits [1]. Short-duration transients (short GRBs, GRB afterglows) are compared to the GRAND200k instantaneous sensitivity at zenith angle $\theta = 90^\circ$ (solid black line). Long-duration transients (e.g., TDE) are compared to declination-averaged sensitivity (gray-shaded band). The stacked fluence from 10 six-month-long blazar flares in the declination range $40^\circ < |\delta| < 45^\circ$ is compared to the GRAND200k sensitivity for a fixed $\delta = 45^\circ$ (dashed black line). The GRAND limits assume that the 200k antennas are deployed at a single location.
GRAND exposure to UHECR detection, assuming 10 random locations of sub-arrays of 20,000 antennas uniformly spaced between geographical latitudes 60°N and 40°S. An uniform acceptance was assumed over zenith angles of 65° – 85°. A full-sky coverage is obtained with such a configuration.

The aperture of GRAND to UHE gamma rays is similar to the one of UHECRs. Figure 2 (right) shows that the sensitivity of GRAND200k to UHE gamma rays is sufficient to detect them even in the pessimistic case where UHECRs are heavy. To compute the preliminary sensitivity of GRAND200k to UHE gamma rays, we assumed that the detector is fully efficient to gamma ray-initiated air showers with energies above 10^{10} GeV in the zenith range 60°–85°. The sensitivity shown is the Feldman-Cousins upper limit at the 95% C.L., assuming no candidate events, null background, and a UHE gamma-ray spectrum $\propto E^{-2}$. The assumption of a background-free search is reasonable in the 10^{10}–$10^{10.5}$ GeV range, even for the conservative hypothesis that GRAND reaches a resolution in X_{max} of only 40 g cm$^{-2}$.

Novel reconstruction methods performing fits to the strength of the radio signal as a function of the angle from the shower axis (angular distribution function) have demonstrated that angular resolutions of $\sim 0.1^\circ$ could be achieved on the particle arrival direction [10, 11], rendering neutrino and gamma-ray astronomy possible with GRAND. For a given sub-array location, the instantaneous neutrino field of view of GRAND is a band between zenith angles $85^\circ \leq \theta \leq 95^\circ$, corresponding to $<5\%$ of the sky. Assuming that all azimuth angles are observed at any instant, approximately 80% of the sky is observed every day by each sub-array. With 10 – 20 locations spread around the globe, GRAND will offer a continuous full-sky coverage which enables multi-messenger astronomy in combination with any other experiment on Earth or in space.

Preliminary results obtained on the energy resolution are encouraging, as expected generally for energy reconstruction with radio measurements. A preliminary reconstruction method using the radio signal lateral distribution function, with no detector response implemented, leads to a 4% energy resolution. Another preliminary global reconstruction method using the angular distribution function leads to a 20% energy resolution [11]. Hence a final energy resolution of 10% is likely to be achieved. Finally, resolutions on X_{max} better than 40 g cm$^{-2}$ were achieved in preliminary studies based on [12]. More refined and optimized methods are being developed to improve the reconstruction of all EAS parameters.

3. A rich science case

GRAND ambitions to tackle a variety of long-standing astrophysics and fundamental physics questions. We list the major questions on which GRAND has a potential to make breakthroughs.

Diffuse neutrino fluxes. With an increase of almost two decades in neutrino sensitivity compared to existing experiments, GRAND ensures the detection of EeV neutrinos. Cosmogenic neutrino studies show that the results from GRAND should severely constrain the sources of UHECRs whatever the outcome of the measurements [5, 13], and constrain the proton fraction at UHE [14]. The GRAND sensitivity, combined with its sub-degree angular resolution, will open the possibility to perform UHE neutrino astronomy, by identifying point-sources [15]. Note that the sources of UHECRs and UHE neutrinos could be different: transparent source environments are indeed favored to let UHECR escape from the sources, while thicker environments could lead to more
abundant neutrino production. Hence, even if a heavy composition was measured for observed UHECRs, it would not necessarily imply that the flux of neutrinos at EeV should be suppressed.

Transient EeV neutrino astronomy. Thanks to its sub-degree angular resolution and its full-sky coverage, GRAND could identify EeV neutrino sources by detecting neutrinos from transient events in coincidence with electromagnetic emission [16, 17]. Figure 1 (right) compares theoretical neutrino fluence estimates from transient sources to the GRAND point-source sensitivities. We present a short-duration gamma-ray burst (sGRB) possibly associated with a double neutron-star merger [18] at 40 Mpc and a GRB afterglow [19] at 40 Mpc, a tidal disruption event (TDE) at 150 Mpc [20], and the stacked fluence of 10 blazar flares in the declination range $40^\circ < |\delta| < 45^\circ$, calculated using as template a 6-month long flare of the blazar 3C66A at 2 Gpc [21]. The sources were assumed to lie at distances such to allow for a conservative rate of ~ 1 event per century. Depending on the background discrimination efficiency, GRAND will be able send alerts to other experiments or coordinated systems like AMON [22] for follow-up campaigns.

UHECR and gamma rays. According to preliminary simulations, GRAND will have full detection efficiency for cosmic rays with zenith angles larger than 70° and energies above 10^{18} eV [1]. This will yield an exposure $\gtrsim 15$ times larger than the Pierre Auger Observatory. Further, it would be a full-sky instrument, which is crucial to study anisotropy [23].

Assuming that an X_{max} resolution of 40 g cm$^{-2}$ is achieved — a realistic goal given present experimental results [24, 25] and preliminary simulations results (see Section 2) —, GRAND will be able to distinguish between UHECR and UHE gamma-ray showers. The non-detection of cosmogenic gamma rays within 3 years of operation of GRAND would exclude a light composition of UHECRs, while a detection of UHE gamma rays from nearby sources would probe the cosmic radio background [26].

Fundamental physics. High-energy cosmic neutrinos provide a chance to test fundamental physics in new regimes [27]. Numerous new-physics models have effects whose intensities are proportional to some power of the neutrino energy and to the source-detector baseline. GRAND could probe new physics with exquisite sensitivities, see e.g., [28], and will be able to test dark matter models through neutrino and photon constraints.

Transient radio-astronomy. By incoherently adding the signals from the large number antennas in a subarray, GRAND will also be able to detect a 30-Jy fast radio burst (FRB) with a flat frequency spectrum [1]. As incoherent summing preserves the wide field of view of a single antenna, GRAND may be able to detect several hundreds of FRBs per day. In addition, the detection of a single FRB by several sub-arrays would enable to reconstruct the arrival direction of the radio signal.

4. Technical challenges

Autonomous radio-detection, i.e., identifying EAS radio signals with radio antennas alone, is a major challenge due to the ubiquitously dominant radio background, which necessitates an important rejection efficiency. It has been shown that EAS radio signatures differ from background events, with much shorter time traces [30] and specific amplitude [31] and polarization patterns...
5. The road to neutrino astronomy

GRAND will be modular and built in stages. Between 2021 and 2025, the 300-antenna pathfinder, GP300, will validate the GRAND detection principle, test and optimize the detection units design, the autonomous trigger and data transfer strategies. GP300 will also conduct an ambitious science program on cosmic rays between $10^{16.5-18}$ eV [36]. 10,000 detection units of the finalized design will be produced and deployed in 2025 to create GRAND10k, the first GRAND sub-array. This array will serve to test challenges related to large-scale arrays, such as communication and data transfer/storage. GRAND10k likely has the sensitivity to detect the first EeV neutrinos. By the 2030s, once this first sub-array has been demonstrated to operate successfully, its design will be frozen. Industrial companies will be prospected to replicate this sub-array and take care of the
mass-production and deployment of the units with predefined specifications in terms of reliability, costs etc. The design of each sub-array may be adapted, depending on location and topography, or to address specific science cases.

References

Full Authors List: GRAND Collaboration

1 Departamento de Física de Partículas & Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
2 Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands
3 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
4 Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), 4 place Jussieu, F-75252, Paris Cedex 5, France
5 Niels Bohr International Academy, Niels Bohr Institute, 2100 Copenhagen, Denmark
6 SUBATECH, Institut Mines-Telecom Atlantique – CNRS/IN2P3 – Université de Nantes, Nantes, France
7 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China
8 Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France
9 University of Science and Technology of China, 230026 Hefei, Anhui, China
10 Astrophysical Institute, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
11 Universidade Federal Fluminense, EEIMVR, Volta Redonda, RJ, Brazil
12 Department of Physics, Department of Astronomy & Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
13 High Energy Theory Group, Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
14 Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Física, Brazil
15 Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (Nikhef), Netherlands
16 IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
17 Institute for Astroparticle Physics, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
18 Institute of Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
The GRAND Project

Kumiko Kotera

19 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
20 Joint Space-Science Institute, College Park, MD 20742-2421, USA
21 Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
22 Wisconsin IceCube Particle Astrophysics Center (WIPAC) and Dept. of Physics, University of Wisconsin-Madison, Madison, WI 53703, USA
23 Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Beijing 100049, China
24 Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi’an 710071, China
25 School of Astronomy and Space Science, Xianlin Road 163, Nanjing University, Nanjing 210023, China
26 Key laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023, People’s Republic of China
27 Vrije Universiteit Brussel (VUB), Dienst ELEM, Pleinlaan 2, B-1050, Brussels, Belgium
28 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Nova Friburgo, Brazil
29 Center for Multimessenger Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
30 LUTH, Obs. de Paris, CNRS, Université Paris Diderot, PSL Research University, 5 place Jules Janssen, 92190 Meudon, France
31 Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France.
32 Institutt for fysikk, NTNU, Trondheim, Norway
33 School of Physics and Astronomy, Sun Yat-sen University, Zuhai 519082, China
34 Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
35 Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Parc Valrose, 06104 Nice Cedex 2, France
36 Department of Mechanical and Electrical Engineering, Shandong Management University, Jinan 250357, China
37 IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
38 Instituto de Física La Plata, CONICET, Boulevard 120 y 63 (1900), La Plata, Argentina
39 Department of Mechanical and Electrical Engineering, Shandong Management University, Jinan 250357, China.
40 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China
41 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
42 LESIA, Observatoire de Paris, CNRS, PSL/SU/UPD/SPC, Place J. Janssen, 92195 Meudon, France
43 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
44 Department of Astronomy, School of Physics, Peking University, Beijing 100871, China
45 Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China

10