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GRAND is a proposed large-scale observatory designed to discover and study the sources of
ultra-high-energy cosmic rays (UHECRs). GRANDwill detect the radio signals made in the Earth’s
atmosphere by ultra-high-energy (UHE) cosmic rays, gamma rays, and neutrinos. The sub-degree
angular resolution of GRAND will make possible the discovery of the first point sources of UHE
neutrinos. We present the detection concept, the expected performances, and the rich science case
of the experiment, as well as the different stages planned to achieve the ultimate array.

1. Detection concept

GRAND is designed to detect inclined extensive air-showers (EAS) produced by UHE cosmic
particles [1]. While entering the atmosphere, UHE particles produce EAS, which in turn generate
electromagnetic emission, mainly through the deflection of charged particles in the shower by the
geomagnetic field. UHE tau neutrinos can also produce such electromagnetic signals by interacting
with the Earth crust, giving birth to a tau lepton that can typically traverse a few tens of km of
rock before exiting in the atmosphere and decaying, hence generating an Earth-skimming EAS. The
geomagnetic emission is coherent in the 10s of MHz frequency range, generating short (< 1 `s),
transient radio pulses, with high enough amplitudes for the detection of showers with energy
& 1016.5 eV [2, 3].

GRANDwill build on themature radio-detection experience of past and existing radio-detection
experiments (AERA, CODALEMA, LOFAR, TREND, Tunka-REX). These instruments have fo-
cused on vertical EAS. Because of relativistic effects, the radio emission is strongly beamed forward,
with an opening angle corresponding to the Cherenkov angle \ . 1◦. For vertical EAS, the radio-
signal propagates over the ∼ 10 km thickness of the atmosphere, and leads to a footprint on the
ground of few 100sm2. The sampling of such a signal necessitates a dense radio array. For very
inclined air-showers on the other hand, the radio emission can propagate over several tens of kilo-
meters, inducing a footprint on the ground of several squared kilometers, which can be sampled
with a sparse (kilometer-step) array.

Radio antennas are ideal components to build giant arrays, being cheap, robust and scalable.
In its final configuration, GRAND will consist of of 200, 000 antennas over 200, 000 km2, split into
∼ 20 sub-arrays of 10, 000 antennas located in different locations across the Earth. The locations of
the sub-arrays will be chosen in radio-quiet environments with relatively easy access, and favorable
topographies. An ideal topography consists of two opposing mountain ranges, separated by a few
tens of kilometers. One range acts as a target for neutrino interactions, while the other acts as a
screen on which the ensuing radio signal is projected. Simulations show that ground topographies
inclined by few degrees only induce detection efficiencies typically three times larger than those
obtained for flat areas [4].

2. Expected Performances

The development of a GRAND end-to-end simulation chain and of several reconstruction tools
dedicated to inclined EAS have enabled to assess the performances of GRAND for UHE neutrino,
cosmic ray, and gamma-ray detection. The simulation chain comprises a 3-D Monte-Carlo sampler
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Figure 1: Left: Differential and integrated neutrino sensitivity limits calculated from the 10, 000 anten-
nas simulation ("GRAND10k", pink area) and the extrapolation for the 20-times larger GRAND array
("GRAND200k", maroon line). The gray region represents the all-flavor cosmogenic neutrinos flux expecta-
tions derived from the results of the Pierre Auger Observatory [5]. Adapted from [1]. Right: GRAND point
source sensitivity limits [1]. Short-duration transients (short GRBs, GRB afterglows) are compared to the
GRAND200k instantaneous sensitivity at zenith angle \ = 90◦ (solid black line). Long-duration transients
(e.g., TDE) are compared to declination-averaged sensitivity (gray-shaded band). The stacked fluence from
10 six-month-long blazar flares in the declination range 40◦ < |X | < 45◦ is compared to the GRAND200k
sensitivity for a fixed X = 45◦ (dashed black line). The GRAND limits assume that the 200k antennas are
deployed at a single location.

of tau leptons generated by ag interactions underground (DANTON [6]), a semi-analytical radio-
signal fast computation tool (Radio-Morphing [7, 8]), and an antenna response module (NEC4 [9]).
The final step is the detector trigger simulation. Our trigger condition requires ≥ 5 units in one
9-antenna square cell to be triggered, and the peak-to-peak amplitude of the voltage signal at the
output of the antennas to be ≥ 30[75]`V (twice the expected stationary background noise in the
50 − 200MHz frequency range) in the aggressive [conservative] scenario.

This simulation chain was run over a 10, 000 km2 area, with 10, 000 antennas deployed along a
square grid of 1 km step size in a basin surrounded by high peaks of the TianShan mountain range
in China. The 10-year 90% C.L. GRAND sensitivity limit (Fig. 1, left) is scaled from the simulated
region to 200, 000 km2 (GRAND200k). The integrated limits correspond to the Feldman-Cousins
upper limit per decade in energy at 90% C.L., assuming a power-law neutrino spectrum ∝ �−2

a ,
for no candidate events and null background. The 10-year GRAND integrated sensitivity limit is
∼ 10−10 GeV cm−2 s−1 sr−1 above 5 × 1017 eV [1].

For UHECR detection, GRAND will be fully efficient above 1018 eV and sensitive to cosmic
rays in a zenith-angle range of 65◦ − 85◦. The geometrical aperture of the experiment will be
107, 000 km2 sr. However, when including events with shower cores outside the instrumented area
and when taking trigger conditions into account, UHECR air-shower simulations indicate that
GRAND would have a 4 − 5 times higher exposure. Figure 2 (left) presents an example of the
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GRAND exposure to UHECR detection, assuming 10 random locations of sub-arrays of 20, 000
antennas uniformly spaced between geographical latitudes 60N and 40S.An uniform acceptancewas
assumed over zenith angles of 65◦ − 85◦. A full-sky coverage is obtained with such a configuration.

The aperture of GRAND to UHE gamma rays is similar to the one of UHECRs. Figure 2
(right) shows that the sensitivity of GRAND200k to UHE gamma rays is sufficient to detect them
even in the pessimistic case where UHECRs are heavy. To compute the preliminary sensitivity
of GRAND200k to UHE gamma rays, we assumed that the detector is fully efficient to gamma
ray-initiated air showers with energies above 1010 GeV in the zenith range 60◦–85◦. The sensitivity
shown is the Feldman-Cousins upper limit at the 95% C.L., assuming no candidate events, null
background, and a UHE gamma-ray spectrum ∝ �−2. The assumption of a background-free search
is reasonable in the 1010–1010.5 GeV range, even for the conservative hypothesis that GRAND
reaches a resolution in -max of only 40 g cm−2.

Novel reconstruction methods performing fits to the strength of the radio signal as a function
of the angle from the shower axis (angular distribution function) have demonstrated that angular
resolutions of ∼ 0.1◦ could be achieved on the particle arrival direction [10, 11], rendering neutrino
and gamma-ray astronomy possible with GRAND. For a given sub-array location, the instantaneous
neutrino field of view of GRAND is a band between zenith angles 85◦≤\≤95◦, corresponding to
<5% of the sky. Assuming that all azimuth angles are observed at any instant, approximately 80%
of the sky is observed every day by each sub-array. With 10− 20 locations spread around the globe,
GRAND will offer a continuous full-sky coverage which enables multi-messenger astronomy in
combination with any other experiment on Earth or in space.

Preliminary results obtained on the energy resolution are encouraging, as expected generally
for energy reconstruction with radio measurements. A preliminary reconstruction method using
the radio signal lateral distribution function, with no detector response implemented, leads to a 4%
energy resolution. Another preliminary global reconstruction method using the angular distribution
function leads to a 20% energy resolution [11]. Hence a final energy resolution of 10% is likely
to be achieved. Finally, resolutions on -max better than 40 g cm−2 were achieved in preliminary
studies based on [12]. More refined and optimized methods are being developed to improve the
reconstruction of all EAS parameters.

3. A rich science case

GRAND ambitions to tackle a variety of long-standing astrophysics and fundamental physics
questions. We list the major questions on which GRAND has a potential to make breakthroughs.

Diffuse neutrino fluxes. With an increase of almost two decades in neutrino sensitivity compared
to existing experiments, GRAND ensures the detection of EeV neutrinos. Cosmogenic neutrino
studies show that the results from GRAND should severely constrain the sources of UHECRs
whatever the outcome of the measurements [5, 13], and constrain the proton fraction at UHE [14].
The GRAND sensitivity, combined with its sub-degree angular resolution, will open the possibility
to perform UHE neutrino astronomy, by identifying point-sources [15]. Note that the sources
of UHECRs and UHE neutrinos could be different: transparent source environments are indeed
favored to let UHECR escape from the sources, while thicker environments could lead to more
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abundant neutrino production. Hence, even if a heavy composition was measured for observed
UHECRs, it would not necessarily imply that the flux of neutrinos at EeV should be suppressed.

Transient EeV neutrino astronomy. Thanks to its sub-degree angular resolution and its full-
sky coverage, GRAND could identify EeV neutrino sources by detecting neutrinos from transient
events in coincidence with electromagnetic emission [16, 17]. Figure 1 (right) compares theoretical
neutrino fluence estimates from transient sources to the GRAND point-source sensitivities. We
present a short-duration gamma-ray burst (sGRB) possibly associated with a double neutron-star
merger [18] at 40 Mpc and a GRB afterglow [19] at 40 Mpc, a tidal disruption event (TDE) at
150 Mpc [20], and the stacked fluence of 10 blazar flares in the declination range 40◦ < |X | < 45◦,
calculated using as template a 6-month long flare of the blazar 3C66A at 2 Gpc [21]. The
sources were assumed to lie at distances such to allow for a conservative rate of ∼1 event per
century.Depending on the background discrimination efficiency, GRAND will be able send alerts
to other experiments or coordinated systems like AMON [22] for follow-up campaigns.

UHECR and gamma rays. According to preliminary simulations, GRAND will have full detec-
tion efficiency for cosmic rays with zenith angles larger than 70◦ and energies above 1018 eV [1].
This will yield an exposure & 15 times larger than the Pierre Auger Observatory. Further, it would
be a full-sky instrument, which is crucial to study anisotropy [23].

Assuming that an -max resolution of 40 g cm−2 is achieved –a realistic goal given present
experimental results [24, 25] and preliminary simulations results (see Section 2)–, GRAND will
be able to distinguish between UHECR and UHE gamma-ray showers. The non-detection of
cosmogenic gamma rays within 3 years of operation of GRAND would exclude a light composition
of UHECRs, while a detection of UHE gamma rays from nearby sources would probe the cosmic
radio background [26].

Fundamental physics. High-energy cosmic neutrinos provide a chance to test fundamental
physics in new regimes [27]. Numerous new-physics models have effects whose intensities are
proportional to some power of the neutrino energy and to the source-detector baseline. GRAND
could probe new physics with exquisite sensitivities, see e.g., [28], and will be able to test dark
matter models through neutrino and photon constraints.

Transient radio-astronomy. By incoherently adding the signals from the large number antennas
in a subarray, GRANDwill also be able to detect a 30-Jy fast radio burst (FRB) with a flat frequency
spectrum [1]. As incoherent summing preserves the wide field of view of a single antenna, GRAND
may be able to detect several hundreds of FRBs per day. In addition, the detection of a single FRB
by several sub-arrays would enable to reconstruct the arrival direction of the radio signal.

4. Technical challenges

Autonomous radio-detection, i.e., identifying EAS radio signals with radio antennas alone,
is a major challenge due to the ubiquitously dominant radio background, which necessitates an
important rejection efficiency. It has been shown that EAS radio signatures differ from background
events, with much shorter time traces [30] and specific amplitude [31] and polarization patterns
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Figure 2: Left: The relative annual geometric exposure to UHECRs of GRAND for a uniform distribution of
10 sub-arrays on the Earth, compared to Auger and the Telescope Array (TA). Right: Projected upper limits
of GRAND on UHE photon sensitivity after 3 years of operation. For comparison, we include the existing
upper limits from Auger and TA, and the projected reach of Auger by 2025. Overlayed are the predicted
cosmogenic UHE photon flux from pure-proton and pure-iron UHECRs, as estimated in [29].

at ground [32]. These unique features have been used by the TREND-experiment to perform an
efficient rejection of the background signals using radio data only [33]. An efficient background
rejection criterion (∼ 99.9% of noise-induced event rejection) at the data acquisition level has also
been developed recently, based on the projection of the total electric field along the direction of
the local magnetic field [8]. Interestingly, this criterion can also be used to discriminate neutrino
and cosmic-ray EAS. These methods are being refined, and sophisticated data treatment techniques
(adaptative filtering, machine learning, etc.) are being developed in parallel [34, 35].

From a hardware point-of-view, an adequate DAQ system, which can treat signals at a high-
enough frequency rate (∼ kHz) should enable to perform efficient triggering. This system has been
implemented in the first 300-antenna prototype, GRANDProto300 (GP300) [36]. The prototype
will serve as a test bench to validate solutions for the next stages of GRAND. It will be deployed
over 200 km2 in an environment with excellent radio quality, presenting a low rate of transient radio
pulses in particular. The protocol used in the site survey for the GP300 phase of GRAND will be
extended and optimized when validating the locations of the GRAND sub-arrays.

5. The road to neutrino astronomy

GRAND will be modular and built in stages. Between 2021 and 2025, the 300-antenna
pathfinder, GP300, will validate the GRAND detection principle, test and optimize the detection
units design, the autonomous trigger and data transfer strategies. GP300 will also conduct an
ambitious science program on cosmic rays between 1016.5−18 eV [36]. 10, 000 detection units of the
finalized design will be produced and deployed in 2025 to create GRAND10k, the first GRAND sub-
array. This array will serve to test challenges related to large-scale arrays, such as communication
and data transfer/storage. GRAND10k likely has the sensitivity to detect the first EeV neutrinos.
By the 2030s, once this first sub-array has been demonstrated to operate successfully, its design will
be frozen. Industrial companies will be prospected to replicate this sub-array and take care of the
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mass-production and deployment of the units with predefined specifications in terms of reliability,
costs etc. The design of each sub-array may be adapted, depending on location and topography, or
to address specific science cases.
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