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1. Introduction

The integrated flux of neutrinos from all past core-collapse supernovae in the visible universe
form the diffuse supernova neutrino background (DSNB), which carries valuable information on the
cosmic star-formation rate, the average core-collapse neutrino spectrum, and the rate of failed SNe.
The existing and future large water-Cherenkov (wCh) and liquid-scintillator (LS) detectors have
good potential to observe the DSNB via the inverse-beta-decay (IBD) reaction, a4 + ? → 4+ + =,
which consists of a prompt signal of positron and a delayed signal of neutron capture. The event
rate of the DSNB is very rare. So far, no appreciable IBD signal events of the DSNB a4 have been
found in wCh and LS detectors.

Comparing to the wCh detectors, the LS detectors have lower energy thresholds, higher energy
resolution, and more than 99% neutron tagging capability. The dominant background is from the
neutral-current (NC) interactions of atmospheric neutrinoswith the carbon nuclei in LS. JUNO [1, 2]
consists of a 20 kt liquid scintillator (LS) detector. Depending on the DSNB model, we expect
about 2−4 IBD events per year in the energy range above the reactor a4 signal. Given the excellent
light yield, the delayed signal from neutron capture on hydrogen in the LS offers a efficient tag
for background reduction, while pulse-shape discrimination helps to suppress the background from
atmospheric neutrino NC interactions. Hence, JUNO is competitive with and complementary to
the wCh detectors like SuperK-Gd.

2. DSNB signal prediction

The DSNB signal spectrum in detector in terms of the measured energy (�prompt) is given by:

3((�prompt)
3�prompt

= #? × f(�a) × � (�a) ×
3q

3�
(�a) , (1)

where, #? is the number of protons of JUNO LS. f(�a) is the energy dependent IBD cross sec-
tion [3]. � (�a) is the Jacobian factor, which is used to convert 3((�a)/3�a to 3((�prompt)/3�prompt.
The last term is the DSNB flux, which can be obtained by

3q

3�a

=

∫ 5

0
'SN(I)

3#
(
� ′a

)
3� ′a

(1 + I)
����23C3I ���� 3I, (2)

where 2 is the speed of light, |dt/dz|−1 = �0(1+ I) [ΩΛ+Ω<(1+ I)3]
1
2 includes the Hubble constant

(H0 = 70 km × s−1 ×Mpc−1) and the ratios of the energy density of matter and the cosmological
constant (ΩΛ = 0.7 and Ωm = 0.3). Due to the red shift effect, a neutrino received at the energy �a

was emitted at a higher energy � ′a = �a (1 + I) . Hence, the factor (1 + I) on the spectrum accounts
for the compression of the energy scale. 3#/3�a is the average SN neutrino spectrum, which has
the contributions from successful and failed SNe. The average SN neutrino spectrum is in terms
of average neutrino energy (〈�a〉), fraction of failed SNe ( 5BH) and core-collapse supernova rate
('SN(0)). However, these parameters are uncertain. Hence, we take a reference set (〈�a〉 = 15
MeV, 5BH = 0.27 and 'SN(0) = 1 × 10−4 yr−1 Mpc−3) and scan of a broad parameter region for
sensitivity study.
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3. Background prediction

The background sources are from the near reactor a4’s, fast neutron, cosmogenic 9Li/8He and
atmospheric neutrino NC/charge current (CC) interactions, for which the NC interaction of atmo-
spheric neutrinos with 12C is one of the most significant source of the backgrounds, approximately
one order magnitude of the DSNB signal [1].

Fast neutron background is induced by untagged muons that most of them only pass through the
surrounding rock. The water as the protective aquifer is used to shield the fast neutrons, leading that
most of fast neutrons capture in the top and equator region of the LS. Hence the spatial distribution
of simulated fast neutron background dominates the fiducial volume. Via the balance of fast neutron
background rate and target mass, a fiducial volume within / and AXY cut < 16 m is used in DSNB
analysis. Due to total reflection (' ≡

√
-2 + .2 + /2 > 16 m) and external radioactivity, there are

two FV regions, one is FV1 (' < 16 m) and the other is FV2 (' > 16 m and / and AXY < 16 m),
in which target mass is 14.7 kt and 3.6 kt, respectively.

The NC interactions of atmospheric neutrinos with 12C, where the emission of one neutron
together with a prompt energy deposit, may be able to mimic the IBD coincidence signal of DSNB.
We have performed a systematic study of the NC background induced by atmospheric neutrinos [4],
which can be applied in the large LS detectors, such as JUNO for the DSNB study. The left panel of
Fig. 1 illustrates the event rates and spectra of atmospheric NC backgrounds for the representative
models. In the visible prompt energy window [12, 30] MeV, we obtain the total event rate of
the IBD-like signals of the atmospheric NC interactions, as shown in the right panel of Fig. 1.
Moreover, in the energy window, the right panel of Fig. 1 summarizes the exclusive event rates for
six representative models, which have been categorized by the final-state products. The average
rate of NC background of six models is estimated to (3.0 ± 0.5) kt−1 yr−1 for energy window from
12 MeV to 30 MeV. Note that the associated uncertainty is about 20%, representing the model
variations.
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Figure 1: Event rates of the NC background as a function of the prompt energies (left panel). Event rates
for the NC background within prompt energy window [12, 30] MeV in the exclusive channels (right panel).

Reducing the uncertainty of the NC background prediction is of prominent importance for the
search for the DSNB at JUNO. The most crucial channel of the NC backgrounds is the 11C channel
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(aG +12 C→ ax+n+11 C), which has triple-coincident signals in LS, typically consisting of a prompt
signal by fast-neutron recoil, a delayed signal by neutron capture on hydrogen and an additional
signal from the unstable 11C decaying at a later time. We develop a maximum-likelihood method to
allow an in situmeasurement of the NC interactions with a triple-coincidence signature after JUNO
starts operation [5]. With JUNO data, we can evaluate the NC background uncertainty of the NC
background for the DSNB search. Fig. 2 shows the relative uncertainty of NC background over
JUNO running time (exposure), which is reproduced from the summary of Ref. [5]. The shaded
bands represents the variations due to different scenarios on the LS radio purity and the rate of
residual cosmogenic 11C. According to it, we can assume that for 1-3 years, 4-9 years, 10-20 years
of JUNO running, the uncertainty of the background in DSNB sensitivity study is around 35%,
25% and 15%, respectively.
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Figure 2: Relative uncertainty of NC background
as a function of exposure.
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Figure 3: PSD efficiency in terms of prompt en-
ergy.

4. Background suppression

The typical predicted rate of DSNB signals in JUNO is about one order of magnitude smaller
than the atmospheric NC background. However, the intrinsic pulse shape discrimination (PSD)
capabilities of LS can suppress the NC background to an acceptable level, which is necessary
to ultimately achieve an unambiguous discovery of the DSNB signal. Multivariate data analysis
with ROOT (TMVA) [6] is applied for the PSD study. The characteristics from raw time profiles
are extracted as variables, including the peak, tail shapes and the position-dependency. If the
average residual NC background level is around 1% in the prompt energy window [12, 30] MeV, the
DSNB signal efficiency is about 91% and 80% for FV1 and FV2, respectively. Given that the PSD
performance is energy-dependent, it is necessary to estimate the PSD efficiency as a function of
energy, which is taken for the sensitivity study. Hence, if the average inefficiency for NC background
is about 1% in the prompt energy window [12, 30] MeV, the energy-dependent PSD efficiency is
shown in Fig. 3, in which the shade bands represent the statistical uncertainty.

For the PSD study, the associated uncertainty is evaluated via the data samples similar to
the atmospheric NC background and the DSNB signal from the future JUNO experimental data.
From the MC study, we have obtained the statistics of such samples for different detector operation
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periods, i.e., 1 year, 3 year, 9 year. Based on the PSD 1% inefficiency, the statistical uncertainty of
these residual samples are about 40%, 20%, 10%, respectively. Therefore, the statistical uncertainty
dominates in the study, and we evaluate the PSD uncertainty based on this uncertainty for different
operation time.

5. Sensitivity

Fig. 4 summarizes the energy spectra of the DSNB signal and background before and after
event selection, which includes the muon veto and energy-dependent PSD cut for FV1 and FV2 and
triple-coincidence (TC) cut for the NC background associated with 11C for FV1 only because of the
quite high level of accidental background in FV2. It should be noted that the TC cut is independent
of the prompt spectra but relied on the decay information of 11C. The observation window for
the prompt events is between 12 MeV to 30 MeV. One can note that after the event selection, the
DSNB signal becomes visible in the observation window. The ratio of signal to background (S/B)
is about 4.76 and 2.04 for FV1 and FV2, respectively, improving two order magnitude with the
event selection.
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Figure 4: DSNB signal('SN (0) = 1.0 × 10−4 yr−1Mpc−3, 〈�〉 = 15 MeV, 5BH = 0.27) and background
spectrum in FV1(top) and FV2(bottom) in JUNO (left)without and (right)with event selection.

In order to calculate the DSNB sensitivity, we employ the Possion-type log likelihood ratio
(denoted as j2) as our test statistics, which is an energy-dependent fit of signal and background
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spectra. The Asimov data set is used to define the medium sensitivity. In our case, the DSNB
discovery sensitivity is defined as the difference between the minimal values of j2 with and without
the DSNB signal after marginalization of other nuisance parameters and physical parameters.

In Fig. 5, we show the preliminary DSNB discovery potential as a function of the running time
(within the fiducial volumes FV1 and FV2). For the nominal model, 〈�a〉 is chosen as 15MeV,
RCCSN = 1.0 × 10−4yr−1Mpc−3 and 5BH = 0.27, represented by black solid line and black circle
point in first panel and last two panels, respectively. For 1-3 years, 4-9 years and 10-20 years of
running, the uncertainty of the background is assumed as 50%, 30% and 20%, respectively, which
are the quadratic summation of uncertainties from the NC background calculation and the PSD
efficiency. From the plots, one can see that, for the nominal model, the DSNB discovery potential
can be achieved 3f after 3 years data taking assuming 50% background uncertainty.
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Figure 5: Sensitivity of DSNB as a function of the running time (within the fiducial volume 18.3 kt).

6. Summary

JUNO has great potential to detect the DSNB signal with its 20 kt LS and we have performed
a systematic study of the detection of the DSNB with JUNO. The dominant background is from the
NC interaction of atmospheric neutrinos with 12C, which surpasses the DSNB by more than one
order of magnitude. The NC background is precisely predicted from the spread of variety of data-
driven models. A novel method of 8= B8CD measurement with 10 years of JUNO data can constrain
the NC background rate within 15%. Besides, the PSD of LS as a powerful tool is developed to
suppresses the atmospheric NC background and fast neutron background to be an acceptable level.
The DSNB discovery potential can be achieved 3f after 3 years data taking assuming the reference
model of DSNB and 50% background uncertainty.
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