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1. Introduction

We proposed in the preceding report [1] an evaluation of penetrating probability of charged
particle in matters, taking account only of bremsstrahlung together with ionization loss. This time
we advance the theory to take account also of positron-electron pair production and photonuclear
interaction [2] to evaluate the survival probability of muon penetrating through matters, according
to the same analytical flow as the preceding report.

We compare the results with those derived from our Monte Carlo simulation [3], where energy
dissipations of muon are based on GEANT4 formulations [4] in main.

2. The diffusion equation for energy dissipations of muon

The diffusion equation for the differential energy spectrum c(�0, �, C) of charged particles,
traversing through matters and dissipating their energies with fractional energy loss and ionization,
is described as [1]

m

mC
c(�0, �, C) = −

∫ 1

0

{
c(�0, �, C) −

1
1 − E c(�0,

�

1 − E , C)
}
q(E)
1

3E + Y′ m
m�

c(�0, �, C), (1)

where C denotes the traversed thicknessmeasured in radiation unit, q(E)3E the differential probability
of fractional energy loss E ≡ −Δ�/� in each g/cm2 of traversed thickness, 1−1 the radiation unit
for muon expressed in g/cm2, and Y′ the constant energy loss in unit radiation length [5]. If we
introduce M-function ofM(B, @, C) by [6]

c(�0, �, C)3� =
3�

(2c8)2

∫ ∫
3B

�

(
�0
�

)B
Γ(−@)

(
Y′

�

)@
M(B, @, C)3@, (2)

the diffusion equation (1) is described as{
m

mC
+ �(B + @)

}
M(B, @, C) = (B + @)@M(B, @ − 1, C) with M(B, 0, 0) = 1, (3)

where �(B) denotes the characteristic energy-dissipating function derived by

�(B) ≡ 1−1
∫ 1

0
{1 − (1 − E)B}q(E)3E. (4)

In case of the energy dissipations for muon, it satisfies 1 ' 4.0 × 10−6 g−1cm2 and Y′ ' 625
GeV for Standard Rock (/ = 11, � = 22) [5]. And as the probability density q(E) for muon is
additive as

q(E) ≡ qP(E) + qB(E) + qN(E) (5)

among dissipating elements of positron-electron pair production (P), bremsstrahlung (B), and
photonuclear interaction (N) [2], the characteristic function �(B) is also additive as

�(B) ≡ �P(B) + �B(B) + �N(B). (6)

Note that we express the characteristic function �(B) for muon in power series, as indicated in the
last report [2] as its Eq. (7) with the coefficients of its Table 1.
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3. The survival probabilities of muon under Approx. A

3.1 The results ordinarily derived by the saddle point method

Without ionization loss (Approx. A), it satisfies Y′ = 0 thus the differential energy spectrum
c(�0, �, C) for muon is derived as the residue at @ = 0 of Eq. (2), so that we have

M(B, 0, C) = 4−�(B)C and (7)

c(�0, �, C)3� =
3�

2c8

∫
3B

�

(
�0
�

)B
4−�(B)C , (8)

where �(B) of muon is expressed as Eq. (6). Then the survival probability Π(�0, �, C) of muons
with their energies greater than � is obtained as

Π(�0, �, C) ≡
∫ ∞

�

c(�0, �, C)3� =
1

2c8

∫
3B

B

(
�0
�

)B
4−�(B)C , (9)

where the path of integration is taken at 0 < R(B). We can evaluate the probability ordinarily by
the saddle point method,

Π(�0, �, C) ' (�0/�) B̄ 4−�( B̄)C/
√

2c{1 − B̄2�′′( B̄)C}, with (10)
ln (�0/�) ' �′( B̄)C + 1/B̄ and 0 < B̄. (11)

The survival probabilities ofmuon versus �0/� so obtained at C = 1, 2, 3, 4, and 5 are indicated in the
left panel of Fig, 1 (dot lines, from left to right). Also, those versus Cwith�0/� = 102, 103, 104, 105,

and 106 are indicated in the right panel of Fig, 1 (dot lines, from left to right).

3.2 The results derived via the complementary probability

As mentioned in the preceding report [1], the ordinary results derived by the saddle point
method give ill accurate limiting probability of 4/

√
2c ' 1.08 [7], exceeding 1, to Π(�0, �, C) in

Fig, 1 at �0/� → ∞ in the left panel and at C → 0 in the right panel. To avoid this inaccuracy, we
introduced the complementary probability Π∗(�0, �, C) defined by

Π∗(�0, �, C) ≡ −
1

2c8

∫
3B

B

(
�0
�

)B
4−�(B)C , (12)

by replacing the path of integration to −1 < R(B) < 0 [1]. The residue of 1 at B = 0 causes the
complementary relation of

Π(�0, �, C) + Π∗(�0, �, C) = 1, (13)

so that the survival probability at the ill accurate regions can also be evaluated by the saddle point
method, improving as

Π(�0, �, C) ' 1 − (�0/�) B̄ 4−�( B̄)C/
√

2c{1 − B̄2�′′( B̄)C}, with (14)
ln (�0/�) ' �′( B̄)C + 1/B̄ and − 1 < B̄ < 0. (15)

The results are indicated in Fig, 1 (thick solid lines), which give the exact limiting values of 1 at
�0/� →∞ in the left panel and at C → 0 in the right panel.
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4. The survival probabilities of muon under Approx. B

4.1 Solution of the survival probabilities

Taking account of ionization loss (Approx. B), the differential-difference equation (3) can be
expressed as

{_ + �(B + @)} L(B, @, _) = (B + @)@L(B, @ − 1, _) + X@,0 (16)

by applying Laplace transform toM(B, @, C),

L(B, @, _) =
∫ ∞

0
4−_CM(B, @, C)3C, (17)

as applied by Nishimura in his (A.5.9) [6]. Then we have

L(B, @, _) = Γ(B + @ + 1)Γ(@ + 1)
Γ(B + 1)

1
_ + �(B) lim

<→∞
{_ + �(B + < + 1)}−@

<∏
9=1

_ + �(B + @ + 9)
_ + �(B + 9) , (18)

thus the survival probability Π(�0, 0, C) of muons at C is derived by integrating Eq. (2) from � to
infinity and taking the limiting value at � → 0, as

Π(�0, 0, C) ≡
1

2c8

∫ (
�0
Y′

)B
Γ(B)M(B,−B, C)3B

=
1
(2c8)2

∫ ∫ (
�0
Y′

)B
4C_Γ(B)L(B,−B, _)3B3_. (19)

4.2 The solution in case of large �0/Y′

The survival probability Π(�0, 0, C) expressed in Eq. (19) can be evaluated as

Π(�0, 0, C) ' (�0/Y′) B̄ Γ( B̄)M( B̄,−B̄, C)/
√

2c(m2/mB2) ln {Γ( B̄)M( B̄,−B̄, C)}, with (20)
ln(�0/Y′) + (m/mB) ln {Γ( B̄)M( B̄,−B̄, C)} = 0 and 0 < B̄ (21)

by applying the saddle point method ordinarily, where Γ(B)M(B,−B, C) is expressed as

Γ(B)M(B,−B, C) =
∞∑
:=0

Γ(B)M: (B,−B)4−�(B+:)C with (22)

Γ(B)M0(B,−B) = −Γ(−B) lim
<→∞

{�(B + < + 1) − �(B)}B
<∏
9=1

�( 9) − �(B)
�(B + 9) − �(B) and (23)

Γ(B)M: (B,−B) = −Γ(−B)
�(:) − �(B + :)
�(B) − �(B + :) lim

<→∞
{�(B + < + 1) − �(B + :)}B

<∏
9=1, 9≠:

�( 9) − �(B + :)
�(B + 9) − �(B + :) , (24)

as indicated ever [6, 8]. Derivatives of Γ(B)M(B,−B, C) are expressed as

m

mB
{Γ(B)M(B,−B, C)} =

∞∑
:=0

[
m

mB
{Γ(B)M: (B,−B)} − �′(B + :)C {Γ(B)M: (B,−B)}

]
4−�(B+:)C , (25)

m2

mB2 {Γ(B)M(B,−B, C)} =

∞∑
:=0

[
m2

mB2 {Γ(B)M: (B,−B)} − 2�′(B + :)C m
mB
{Γ(B)M: (B,−B)}

+
{
�′(B + :)2C2 − �′′(B + :)C

}
{Γ(B)M: (B,−B)}

]
4−�(B+:)C . (26)
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The survival probabilities versus �0/Y′ so obtained at C = 1, 2, 3, 4, and 5 are indicated in the
right panel of Fig. 2 (dot lines, from top to bottom). We approximated the summation of Eq. (22)
by the first term (: = 0), as applied in the preceding report [1]. Derivatives of Γ(B)M: (B,−B) are
evaluated numerically. This method is valid at 10 . �0/Y′, showing satisfactory convergence.

Though, the evaluations by Eq. (20) obviously give a little larger results at regions of �0/Y′ �
1, exceeding 1, due to the inaccuracy of the ordinary saddle point method. We evaluate the
complementary probability of

Π∗(�0, 0, C) ≡ − 1
2c8

∫ (
�0
Y′

)B
Γ(B)M(B,−B, C)3B

' (�0/Y′) B̄ Γ( B̄)M( B̄,−B̄, C)/
√

2c(m2/mB2) ln {Γ( B̄)M( B̄,−B̄, C)}, with (27)
ln(�0/Y′) + (m/mB) ln {Γ( B̄)M( B̄,−B̄, C)} = 0 and − 1 < B̄ < 0, (28)

then Π(�0, 0, C) ≡ 1 − Π∗(�0, 0, C) obtained through the relation of Eq. (13) give more accurate
results reaching to 1 at �0/Y′ → ∞, as indicated in the right panel of Fig. 2 (thin solid lines, at
C = 1, 2, 3, 4, and 5 from top to bottom). Note that Π(�0, 0, C) derived here can also be applied to
obtain the probability in case of small �0/Y′, discussed in the next subsection.

Also, the survival probabilities versus C with �0/Y′ = 10, 102, 103, 104, 105, and 106 evaluated
by Eq. (20) are indicated in the right panel of Fig, 3 (dot lines, from left to right). We approximated
the summation of Eq. (22) by the first term (: = 0). Then we can effectively determine C by

�′( B̄)C = ln(�0/Y′) + (m/mB) ln {Γ( B̄)M0( B̄,−B̄)} . (29)

This method is valid at 10 . �0/Y′, showing satisfactory convergence. The results evaluated by
the ordinary saddle point method of Eq. (20) give ill accurate probability, where we improved the
probability Π(�0, 0, C) through the complementary probability by Eqs. (13), (27), and (29) with
−1 < B̄ < 0 as indicated in the right panel of Fig, 2 (solid lines, from left to right).

We compare the results with those derived from our Monte Carlo simulation [3]. We confirm
fairy good agreements between the two in the right panels of Figs. 2 and 3. Though, the right panel
of Fig, 3 shows a little larger survival probabilities in the analytical results than those in the Monte
Carlo results, which will be caused by the smaller ionization loss with the constant value of Y′ '
625 GeV taken by the former, than the slowly increasing ionization loss with increase of energy �
taken by the latter due to applying the Bethe-Bloch cross-section.

4.3 The solution in case of small �0/Y′

Evaluation of the survival probability by Eq. (20) described in the last subsection can not be
applied any more in case of small �0/Y′, due to divergence of the results. Thus we derive the
survival probability of Eq. (19) by

Π(�0, 0, C) =
1

2c8

∫
4C_Ξ(�0/Y′, _)3_

' 4C_̄Ξ(�0/Y′, _̄)/
√

2c(m2/m_2){lnΞ(�0/Y′, _̄)}, with (30)
C ' −(m/m_){lnΞ(�0/Y′, _̄)} and −∞ < _̄ < ∞, (31)

5
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where we introduce Ξ(�0/Y′, _) as

Ξ(�0/Y′, _) =
1

2c8

∫ (
�0
Y′

)B
Γ(B)L(B,−B, _)3B

= − 1
2c8

∫
3B

(
�0
Y′

)B
Γ(−B)
_ + �(B) lim

<→∞
{_ + �(B + < + 1)}B

<∏
9=1

_ + �( 9)
_ + �(B + 9) , (32)

with the path of integration taken at 0 < R(B) < 1. As Γ(−B) gives the residue of −(−1):/:! at
B = : , we have

Ξ(�0/Y′, _) = −
∞∑
:=1

1
:!

(
−�0
Y′

) : 1
_ + �(:) lim

<→∞
{_ + �(: + < + 1)}:

<∏
9=1

_ + �( 9)
_ + �(: + 9)

=
�0
Y′
−
∞∑
:=2

1
:!

(
−�0
Y′

) : :−1∏
9=1
(_ + �( 9)), (33)

and have the derivatives of Ξ(�0/Y′, _) as

m

m_
Ξ(�0/Y′, _) = −

∞∑
:=2

1
:!

(
−�0
Y′

) : :−1∏
9=1
(_ + �( 9))

:−1∑
9=1

1
_ + �( 9) , (34)

m2

m_2Ξ(�0/Y′, _) = −
∞∑
:=3

2
:!

(
−�0
Y′

) : :−1∏
9=1
(_ + �( 9))

:−2∑
9=1

1
_ + �( 9)

:−1∑
<= 9+1

1
_ + �(<) . (35)

The survival probabilities versus �0/Y′ so obtained at C = 0.2, 0.4, 0.6, 0.8, and 1.0 are indicated in
the left panel of Fig, 2 (dot lines, from left to right). This method was valid at �0/Y′ . 2. Though
the results soon exceed 1 at larger �0/Y′ regions, where we replaced the results by applying the
complementary probabilities of Eq. (27) (thin solid lines at C = 0.2, 0.4, 0.6, 0.8, and 1.0).

The complementary probability of Eq. (30) gives

Π∗(�0, 0, C) ≡
1

2c8

∫
4C_Ξ∗(�0/Y′, _)3_

' 4C_̄Ξ∗(�0/Y′, _̄)/
√

2c(m2/m_2){lnΞ∗(�0/Y′, _̄)}, with (36)
C ' −(m/m_){lnΞ∗(�0/Y′, _̄)} and 0 < _̄, (37)

where

Ξ∗(�0/Y′, _) ≡ − 1
2c8

∫ (
�0
Y′

)B
Γ(B)L(B,−B, _)3B = 1/_ − Ξ(�0/Y′, _). (38)

Note that the residue of 1/_ at B = 0 was taken into account as the path of integration was moved
to R(B) < 0. And we have

(m/m_)Ξ∗(�0/Y′, _) = −1/_2 − (m/m_)Ξ(�0/Y′, _), (39)
(m2/m_2)Ξ∗(�0/Y′, _) = 2/_3 − (m2/m_2)Ξ(�0/Y′, _). (40)

The survival probability Π(�0, 0, C) ≡ 1 − Π∗(�0, 0, C) obtained here from Eq. (36) partially inter-
polate that from Eq. (27) and that from Eq. (30) , as indicated in the left panel of Fig, 2 (thick solid
lines at C = 0.2 and 0.4, from left to right).
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Also, the survival probabilities versus C with �0/Y′ = 0.1, 0.2, 0.5, 1.0, and 2.0 are evaluated
via the complementary probability of Eq. (27) in case of small probability decrease from 1 (thin
solid lines, from left to right), by Eq. (30) in case of large probability decrease from 1 (dot lines,
from left to right), and via Eq. (36) in case of interpolating the above cases, as indicated in the left
panel of Fig, 3 (thick solid lines for �0/Y′ = 0.1, 0.2, and 0.5, from left to right).

We compare the results with those derived from our Monte Carlo simulation. The former
shows more rapid decreases of the survival probability at small traversed thickness than the latter
as indicated in the left panels of Figs. 2 and 3, which will be caused by harder cross-sections for
the fractional energy loss applied in the former with � →∞ assumed than that applied in the latter,
especially by difference of the bremsstrahlungs applied as indicated in Fig. 2 of the last report [2].

5. Conclusions and discussions

Survival probabilities of muon penetrating through matters are evaluated analytically by taking
account of bremsstrahlung, positron-electron pair production and photonuclear interactions, together
with ionization loss. The complementary-probability method was effective to remove inaccuracy
of the ordinary saddle point method to give probabilities exceeding 1.

Comparison of the analytical results obtained this time with those derived from our Monte
Carlo method shows the both agree fairy well. Though, systematic quantitative differences between
the two are found which will be caused by the difference of energy-dissipation model in continuous
ionization loss and discrete fractional dissipations. It will be important to apply the both, making
use of the respective advantages.
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Figure 1: Survival probabilities with Y′ = 0 (Approx. A) versus �0/� at C = 1, 2, 3, 4, 5 (left panel) and
those versus C with �0/� = 102, 103, 104, 105, 106 (right panel), derived by the ordinary saddle point
method (thin lines) and via the complementary-probability method (thick lines).
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Figure 2: Survival probabilities (Approx. B) versus �0/Y′ at C = 0.2, 0.4, 0.6, 0.8, 1 (left panel) and those
at C = 1, 2, 3, 4, 5 (right panel), derived by the ordinary saddle point method (thin dot lines), via the
complementary-probability method (thick lines), via the extended complementary probabilities from large
�0/Y′ region (thin lines in the left panel), and by Monte Carlo simulations (dots).
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Figure 3: Survival probabilities (Approx. B) versus C with �0/Y′ = 0.1 0.2, 0.5, 1.0, 2.0 (left panel) and
those with �0/Y′ = 10, 102, 103, 104, 105, 106 (right panel), derived by the ordinary saddle point method
(thin lines), via the complementary-probability method (thick lines), and by Monte Carlo simulations (dots).
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