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The space experiment DArk Matter Particle Explorer (DAMPE) is developed and supported by an
international collaboration including institutes and universities from China, Italy and Switzerland,
DAMPE is designed to measure cosmic-rays (CRs) and gamma-rays in space, and since December
2015 it is collecting data with smooth and continuous operations. The instrument consists of
two layers of plastic scintillators to identify the charge of individual elements from proton to
iron, a silicon-tungsten tracker providing accurate particle tracking and complementary charge
measurement, and a thick calorimeter (32 radiation lengths) providing a good potential to measure
CRs in the energy range from 50 GeV up to 100 TeV. This measure is of fundamental importance
to shed light on the mechanism of acceleration and propagation of cosmic rays in the Galaxy. In
this report, the selection criteria of the carbon and oxygen components will be illustrated; Some
comparison of charge between Monte Carlo data and flight data have been done. And efficiency
of event selections also be validated by Monte Carlo simulations.
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1. Introduction

Many space-borne experiments, such as AMS-02 [1], PAMELA [2], CALET [3], Fermi-LAT
[4], measured galactic CR fluxes which are important in understanding their origin and propagation
mechanisms. DAMPE is a satellite-based general-purpose high energy particle detector. It was
launched into a sun-synchronous orbit around the earth at an altitude of 500 km on December 17,
2015. The scientific objectives of DAMPE are the searches for Dark Matter decay or annihilation
signatures, gamma-ray astronomy and the measurement of CR fluxes. Thanks to the great thickness
of the DAMPE calorimeter and large acceptance, the satellite collected many CR events for more
than five years. In this work we present the analysis procedure for carbon and oxygen fluxes and
specifically the selection criteria adopted to properly identify them.

2. DAMPE detector

The DAMPE detector [5, 6] is composed of the following sub-detectors (see Fig. 1): a
Plastic Scintillator strip Detector (PSD) [7], a Silicon-Tugsten tracKer (STK) [8], a BGO imaging
calorimeter [9], and a NeUtron Detector (NUD). The PSD is designed to measure the charge of
incident particles up to Z =26 and provides an anti-coincidence veto signal for gamma rays. The
STK is dedicated to reconstruct the trajectories of charged particles and also to provide electron-
gamma identification. The BGO calorimeter, which has a depth of 32 radiation lengths and 1.6
nuclear lengths, is in charge for CR energy measurement and provides a powerful electron-hadron
discrimination. The NUD mainly improves the electron-proton separation power, especially for
energy above TeV.

Figure 1: Side view of the DAMPE detector.

3. Data analysis

The data used for the analysis described in this work were taken from January 1st , 2016 to
December 31st , 2020 (Fig. 2). The number of collected events per day is about 5 millions, and the
data taking mode of DAMPE is very stable. After excluding the lost time, such as the time in South
Atlantic Anormaly (SAA) region, the instrumental dead time (3.0725 ms per event) and the time
for on-orbit calibration of the sub-detectors, the residual fraction of live time is about 76.19%. For
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Monte Carlo(MC) data, Geant4 is the main simulation engine for DAMPE experiment. The model
of Geant4 used for this analysis is FTFP_BERT(Hadronic Model) with a hemispherical source of
1.0 m radius. The energy range of MC data is from 50 GeV to 100 TeV.

Figure 2: Event rate recorded by DAMPE from January 1st , 2016 to December 31st , 2020.

3.1 Event selection

Data collected in the SAA region are excluded to make sure DAMPEworks in a good condition.
The following selection criteria are applied in order to select the events crossing all sub-detectors
with a proper shower profile development in BGO calorimeter and precise track reconstruction in
STK.

• Pre-selection
The first one consists of a set of geometrical fiducial cuts which aim to select the most reliable
track: the event must be contained in the sensitive volume from the top PSD Layer to the
bottomBGOLayer. Then, for BGO sub-detector, the trackmust intercept both top and bottom
layers within 280 mm from the respective center. Moreover, the energy deposit is required to
be greater than 100 GeV to avoid geomagnetic rigidity cutoff effects for carbon and oxygen.

• Shower profile selection
This selection relies on BGO calorimeter, which is responsible for the energy measurement.
The calorimeter is composed of 308 BGO crystal bars (2.5 × 2.5 × 60 cm3). The crystals
are arranged horizontally in 14 layers, each layer made by 22 bars. The bars of a layer are
orthogonal to those of the subsequent one in order to reconstruct the shower profile in both
views.
The present analysis step is mainly addressed to select the events with a proper shower
development in BGO calorimeter. Firstly, the events are required to pass the High Energy
(HE) trigger, which is one of five group trigger logics of the DAMPE detector[10]. HE
trigger is triggered when a particle has significant energy deposit in the first four layers of the
calorimeter. Then, the energy ratio of the maximum layer energy to the total BGO energy
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must be greater than 0.3+0.2/[1/Log(BGOE )]with the aim of removing the events with too
much energy leak at the bottom of BGO calorimeter, and BGOE is the total deposited energy
in BGO calorimeter. Lastly, the maximum energy bar of each layer is required not to be in
the first and last two BGO columns in order to remove the events with energy loss at the side
edges.

• Track Selection
The track-finding algorithm typically reconstructs more tracks in the STK, which are caused
by pre-showering of cosmic ray and back scattering of the secondary particles. Some selection
cuts are used to select the most reliable track: 1) the value of χ2/ndo f should be less than
150; 2) the BGO bar hit by the track should be the maximum deposited energy bar of the
layer; 3) the PSD strip hit by the track should also be that with the maximum energy deposit
one of the two adjacent PSD strips; 4) the energy in the STK cluster hit by track at the first
layer should be the maximum energy in the layer; 4) the distance of the candidate track to
the BGO track should less than 25 mm; 5) lastly, the ADC value of the STK cluster hit by
the track on the first layer should be greater than 500 in order to reduce the contamination of
proton and helium.

• Charge selection
The charge measurement is mainly provided by the PSD which is arranged in a double
layer configuration and has in total 82 detector strips. The two PSD layers are placed in a
hodoscopic configuration. The deposit energy in a hit strip due to ionization is proportional
to the square of the particle charge, and is about 2 MeV for a proton crossing vertically the
strip. The results of the measured charge correlation between the two PSD layers are shown
in Fig.3 before and after track selection. The charge selection requires that the difference of
the charges measured by the two layers must should be less than 1, then the combined charge,
which is equal to the average charge of two layers, is used for the analysis. Figure 4 shows the
charge spectrums after the different cuts, where the carbon and oxygen peaks can be clearly
seen after the final charge selection. Several comparisons between MC data and flight data
have also been done for carbon and oxygen, in order to validate the event selection criteria.
Figure 5 shows the comparison between MC and flight data, concerning the behavior of the
peak and width of the carbon charge spectrum as a function of the BGO deposited energy.
Figure 6 reports the results of the template fits for the BGO energy intervals from 562 GeV
to 749 GeV and from 3.2 TeV to 5.6 TeV, showing the agreement between MC data and flight
data.

3.2 High Energy Trigger Efficiency Validation

The validation of HE trigger efficiency can be checked using the simulation data. Beside the
specific cuts (HE trigger), further cuts have been implemented in DAMPE to calculate the efficiency.

Concerning the HE trigger efficiency, it can be estimated in the following way:

εtrigger =
NHE&LE

NLE
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Figure 3: The charge correlation between the two PSD layers, the left one is before track selection and the
right one is after track selction
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Figure 4: Spectrum of the combined charge from the two PSD layers (see text) at the different selection
steps. A significant improvement of the resolution is clearly obtained after the final charge selection (blue
line).

where LE refers to the Low Energy trigger, which requires that the particles should pass through the
first and the last four BGO layers with low energy deposited. In practice, it is estimated by means of
low energy trigger sample, which is pre-scaled by a factor 1/8 at low latitudes(< 20 deg) and 1/64
at high latitudes. The results are shown in Fig. 10 ((a) and (b)), from which we can see that the
efficiency for data is 100% when the deposited energy is above 400 GeV. Because of the pre-scale
factor applied to low energy trigger, the statistics is limited at high energy. From the result, the HE
trigger efficiency of flight data is in good agreement with MC simulation, the difference being less
than 2% for both carbon and oxygen.
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Flight Data
MC    Data

PeakCarbon_PSD_Plane0 WidthCarbon_PSD_Plane0

PeakCarbon_PSD_Plane1 WidthCarbon_PSD_Plane1

Flight Data
MC    Data

Flight Data
MC    Data

Flight Data
MC    Data

Figure 5: The comparison between flight data and Monte Carlo data of both peak and width for Carbon
charge spectrum, as a function of BGO deposited energy. The top plots refer to the results of charge peak
and width for one layer, the bottom plots for the other layer.
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Figure 6: The results of template fit. The left one is the result for the range from 562 GeV to 749 GeV, the
right one for the range from 3.2 TeV to 5.6 TeV.

4. Conclusion

DAMPE has been in smooth operation for more than 5 years since its launch on Dec. 17th
2015. Some criteria for selecting carbon and oxygen events were developed, and the charge of
carbon and oxygen after final cut were validated by Monte Carlo data, some efficiencies of selection
criteria were also validated by Monte Carlo data.
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Figure 7: HE trigger efficiency as a function of the energy deposited in BGO calorimeter (top figures) and
difference between simulation and flight data expressed by the ratio between the related efficiencies as a
function of deposited energy (bottom figures). The left plot is the result for carbon, and the right one for
oxygen.

More validation tests with different simulation models and more precise evaluations of system-
atic uncertainties are necessary for next analysis steps.
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