Observation of Z>2 trapped nuclei by AMS on ISS

Francesca Giovacchini, Alberto Oliva and Martha Valencia-Otero on behalf of the AMS Collaboration
(a complete list of authors can be found at the end of the proceedings)

The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment operating continuously aboard the International Space Station (ISS) since the 19th of May of 2011. A component of trapped Z>2 ions located in the South Atlantic Anomaly (SAA) has been detected traversing the instrument both in down-going and up-going directions.

37th International Cosmic Ray Conference (ICRC 2021)
July 12th – 23rd, 2021
Online – Berlin, Germany

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
The Alpha Magnetic Spectrometer (AMS-02) particle detector, launched in 2011 and installed as a module in the International Space Station (ISS), has the potential of precisely measuring cosmic ray fluxes and composition, including ions up to Z=26. Since the beginning of its operation, AMS-02 has collected over 150 billion events. In this paper we report the observation of a Z>2 trapped nuclei population, detected near the equator inside the SAA, in 8.5 years of data collection.

1. Data Sample

The selection considers the widest field of view of the detector, up to 45 degrees with respect to vertical, and includes events traversing AMS in both, down-going and up-going directions. A layout of the detector is presented in [1-2]. Events are required to have a good track reconstruction in the Inner Tracker and satisfy good quality criteria on velocity and charge reconstruction. Charge measurements in the Inner Tracker and Time of Flight (TOF) are selected to be in accordance with Z>2 ions and conditions to reject interacting events inside the detector have been implemented as well. This study focuses in the equatorial region with $|\Theta_M|<0.3$ and velocity $|\beta|<0.86$.

2. Backtracing Procedure

The procedure of backtracing a charged particle’s trajectory to ascertain its origin, consists on propagating the particle with inverted sign an arrival direction in the Earth’s magnetic field. In this study, we have applied a backtracing routine that implements the IGRF-13 geomagnetic field model [3]. The outcome of the procedure classifies events in the following possible categories [4]:

- **Cosmic**: when the particle trajectory escapes a limit of 25 Earth’s radii.
- **Quasi Trapped (QT)**: if the particle reaches a boundary set at 40 km from the Earth’s surface.
- **Stable Trapped (ST)**: if after 50 s of propagation, the backtracing outcome is neither cosmic nor quasi trapped.

However, it is important to consider two effects that could introduce a difference in the particle classification when the backtracing is performed once. Firstly, the existence of the so-called penumbra region, where small variations of the initial conditions could lead to a change of the procedure’s outcome. Secondly, uncertainties in the backtracing parameters, such as the rigidity determination, the ISS orbit location and AMS direction could also modify the particle categorization. Therefore, in order to account for these effects, the backtracing routine was conducted several times, varying the particle arrival direction ($\pm 0.2^\circ$) and space station position in time (± 50 ms). Finally, the previously described procedure allows a conservative classification of our data sample and the selection of those particles with QT and ST trajectories is certainly achieved.

3. Results

Succeeding our sample selection and backtracing procedure, a population of trapped ions has been identified in the equatorial region inside the SAA, as shown in Fig.1. Both, down-going and up-going events are included in the observation and these two populations present similar relative
obduction of $Z > 2$ trapped nuclei by AMS on ISS

Martha Valencia-Otero

Figure 1: Trapped nuclei events detection location. Down-going and up-going particles are displayed in cyan and yellow respectively, on top of the total Earth’s magnetic field map [nT].

Figure 2: Charge distribution of $Z > 2$ trapped ions. Both, down-going and up-going events are included.

abundances. The charge distribution of trapped ions is depicted in Fig.2, where an overabundance of Lithium and Carbon is noticeable. In addition, the Li/C and C/O ratios for this trapped population are remarkably different from those observed in galactic cosmic rays (where Li/C ~ 0.1 and C/O ~ 1).

4. Conclusions

A search of trapped nuclei with $Z > 2$ has been carried out with 8.5 years of AMS data collection. By means of a backtracing procedure, the classification of events as trapped has been conservatively
Observation of Z>2 trapped nuclei by AMS on ISS

Martha Valencia-Otero

achieved. Hence, we report the observation of a population of Z>2 trapped nuclei, near the equator inside the SAA, including events entering AMS from down-going and up-going directions. Our results show that the relative abundances of the trapped particles are distinctly different from the galactic cosmic rays. This study represents the first observation of Z>2 trapped ions above 1 GV.

References

Full Authors List: AMS Collaboration

1Physics Institute and JARA-FAME, RWTH Aachen University, 52056 Aachen, Germany
2Department of Physics, Middle East Technical University (METU), 06800 Ankara, Turkey
3Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LAPP-IN2P3, 74000 Annecy, France
4Beihang University (BUAA), Beijing, 100191, China
5Institute of Electrical Engineering (IEE), Chinese Academy of Sciences, Beijing, 100190, China
6Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, 100049, China
7University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
8INFN Sezione di Bologna, 40126 Bologna, Italy
9Università di Bologna, 40126 Bologna, Italy
10Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
11East-West Center for Space Science, University of Maryland, College Park, Maryland 20742, USA
12IPST, University of Maryland, College Park, Maryland 20742, USA
13CHEP, Kyungsung National University, 41566 Daegu, Korea
14CNR-IOE, 50125 Firenze, Italy
15European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland
16DPNC, Université de Genève, 4, Switzerland
17Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
18Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, Netherlands
19Nan Ya-Sen University (SYSU), Guangzhou, 510275, China
20Physics and Astronomy Department, University of Hawaii, Honolulu, Hawaii 96822, USA
21National Aeronautics and Space Administration Johnson Space Center (JSC), Houston, Texas 77058, USA
22Shandong University (SDU), Jinan, Shandong, 250100, China
23Shandong Institute of Advanced Technology (SDIAT), Jinan, Shandong, 250100, China
24Jülich Supercomputing Centre and JARA-FAME, Research Centre Jülich, 52425 Jülich, Germany
25Institut für Experimentelle Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
26Institut für experimentelle und angewandte Physik, Christian-Alberts-Universität zu Kiel, 24118 Kiel, Germany
27Instituto de Astrofísica de Canarias (IAC), 38205 La Laguna, and Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
28Laboratório de Instrumentação e Física Experimental de Partículas (LIP), 1649-003 Lisboa, Portugal
29National Chung-Shan Institute of Science and Technology (NCSIST), Longtan, Tao Yuan, 32546, Taiwan
30Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
31Instituto de Fisica, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 01000 México
Observation of Z>2 trapped nuclei by AMS on ISS

Martha Valencia-Otero

32INFN Sezione di Milano-Bicocca, 20126 Milano, Italy
33Università di Milano-Bicocca, 20126 Milano, Italy
34NRNU MEPiI (Moscow Engineering Physics Institute), Moscow, 115409 Russia
35Sudost University (SEU), Nanjing, 210096, China
36Sodankylä Geophysical Observatory and Space Physics and Astronomy Research Unit, University of Oulu, 90014 Oulu, Finland
37INFN Sezione di Perugia, 06100 Perugia, Italy
38Università di Perugia, 06100 Perugia, Italy
39INFN Sezione di Pisa, 56100 Pisa, Italy
40INFN TIFPA, 38123 Povo, Trento, Italy
41Università di Trento, 38123 Povo, Trento, Italy
42Agenzia Spaziale Italiana (ASI), 00133 Roma, Italy
43INFN Sezione di Roma 1, 00185 Roma, Italy
44Università di Roma La Sapienza, 00185 Roma, Italy
45INFN Sezione di Roma Tor Vergata, 00133 Roma, Italy
46National Cheng Kung University, Tainan, 70101, Taiwan
47Academia Sinica Grid Center (ASGC), Nankang, Taipei, 11529, Taiwan
48Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
49Physics Department and Center for High Energy and High Field Physics, National Central University (NCU), Tao Yuan, 32054, Taiwan
50Space Research Laboratory, Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland