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The cosmic-ray Sun shadow is caused by high-energy charged cosmic rays (CRs) being blocked
and deflected by the Sun and its magnetic field, thereby modulating the resulting shadow in both
size and shape. Recent Sun shadow observations by ground-based particle observatories have
established a novel and potentially fruitful link between solar physics and high-energy particle
astrophysics. Most notably, the shadow’s size and depth was recently shown to correlate with
the 11-year solar cycle. This talk addresses the observational situation, the general setup and
implementation of our group’s Sun shadow simulations, test cases, and actual simulations of
increasing complexity. Based on extrapolations from magnetograms, we create artificial shadow
images by numerically computing trajectories of charged CRs in the coronal magnetic field for the
energy range of 5–316 TeV and for various mass numbers and typically measured CR spectra, and
analyze these images in comparison to data from the IceCube neutrino observatory. We confirm
the observationally established correlation between the magnitude of the shadowing effect and
both the mean sunspot number and the polarity of the magnetic field during the solar cycle.
Contrary to previous findings, a non-monotonous dependence on energy during solar minimum is
identified and modeled using a simplified (dipolar) configuration for the coronal magnetic field.
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Magnetic ray tracing for the Sun’s CR shadow Jens Kleimann

1. Introduction

Extended celestial objects, most notably the Sun and the Moon, can block incoming cosmic
rays (CRs), causing a localized decrease of intensity known as the CR shadow of the body in
question. This phenomenon was observed as early as 1993 [1], and has more recently also been
identified in CR intensity maps created using data from various observational facilities (see [2]
and references therein) including IceCube, see left panel of Figure 1. While the observed Moon
shadow is consistent with simple geometrical shielding by a solid, Moon-sized sphere, the Sun
shadow shows waxing and waning on a timescale of about eleven years. This can be further
quantified as shown in the right panel of Figure 1, indicating that shallow/weak shadows correlate
well with proxies of high solar activity, such as sunspot number. This has been tentatively explained
by arguing that a strong coronal magnetic field will divert many particles towards Earth, thereby
brightening the shadow region. However, the same line of reasoning could also be used to argue that
many particles will likewise get deflected away from Earth. The net effect is therefore yet unclear,
and the correlation indicated in Figure 1 thus motivates more in-depth studies and simulations.

Furthermore, not only the absolute field strength, but also the qualitative structure of the coronal
magnetic field varies throughout the solar cycle, namely from a dipolar field being dragged out
radially by the solar wind during times of solar minimum, towards a highly irregular, asymmetric
field of mixed polarity during solar maximum. Using full-orbit particle simulations, it will be
demonstrated in this paper that the latter effect does indeed exert a crucial influence on the resulting
shadow size/depth.

2. Simulation method and Tests

Because travel times of CRs through the solar corona amount to mere seconds, the Sun’s gravity
can safely be ignored when determining the particles’ dynamics. Likewise, the motional electric
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Figure 1: Left: the CR Sun shadow as observed by IceCube [3], shown as a sky map of relative deficit
(decrease of intensity relative to the mean background level). The black circle marks the solar disk. Right:
correlation between the integrated deficit (normalized to the area of the solar disk) as observed by IceCube
in seasons 2010/11–2016/17 vs. sunspot number, with each data point representing a different year. Taken
from [4].
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Magnetic ray tracing for the Sun’s CR shadow Jens Kleimann

field ®� = −®Esw × ®� induced by the velocity ®Esw of the solar wind plasma is of order |®Esw |/2 ∼ 10−4,
and can therefore be neglected as well. The trajectory C ↦→ ®A (C) of a CR particle (rest mass <,
charge @ = /4) in a magnetic field ®� is therefore governed by the system

d®A
dC
= ®E ∧ d(W< ®E)

dC
= @ ®E × ®� (1)

or, in dimensionless form,
d®A ′
dC ′

= ®E′ ∧ d®E′
dC ′

= [ ®E′ × ®�′ (2)

with normalization constants !0 = '� (the solar radius), E0 = 2, and C0 = '�/2. This results in

[ =
/4 �0 '�
W<2

≈ 209 /
�0 [mT]
� [TeV]

= 209
�0 [mT]
% [TV] (3)

as the only free parameter, in which rigidity is to be defined as % := (W<22)/@ rather than just
(W<2)/@. Note that the Lorentz factor W = W( |®E |) can be treated as a constant since the Lorentz
force cannot change the magnitude of ®E.

Equation (2) can be integrated numerically in a multitude of ways, with the Boris push [5]
being among the most appropriate ones since it merely rotates ®E but, by construction, leaves |®E |
unchanged, along with the particle’s energy.

In our setup, we place the center of the Sun at the origin of a Cartesian coordinate system with
unit vectors { ®4G , ®4H , ®4I} and the axis of solar rotation pointing along +®4I . The terrestrial observer
is located at ®A0 = 30 ®4G at a distance 30 = 1 au/'� ≈ 215, with all distances measured in units of
'�. The observer’s quadratic viewing window is oriented normal to ®4G and located at −(30 − 5) ®4G ,
spanning a 3◦ × 3◦ field of view centered on the Sun. The view window is then split into a grid of
(typically) 100×100 pixels, and virtual particles are launched from the observer through each pixel
and towards the coronal region behind it. Once a particle enters a magnetized region, its trajectory
is integrated using Equation (2) until it either intersects the photosphere (i.e. the unit sphere A = 1)
or escapes into an unmagnetized region at larger heliocentric distance. The corresponding pixel is
then colored depending on the particle’s fate as either, say, black (0) for particles hitting the Sun, or
white (1) for those avoiding it, resulting in a binary (black/white, 0/1) shadow map.

While actual particles coming in effectively from infinity towards the detector would of course
traverse the trajectory in the opposite direction, only a very small number of them will pass through
the viewing window and contribute to the observed image. But since a joint inversion of both C and
@ leaves the dynamics of Equation (2) unchanged, the above procedure can be made fully equivalent
to the actual direction of propagation, provided that the particle’s charge is also reversed. For this
reason, our procedure of back-tracking anti-particles, which closely follows the concept of optical
ray tracing in inhomogeneous media (see, e.g. [6, 7]), allows for very efficient image generation by
a priori elimination of all non-contributing trajectories.

3. Test cases

Asusualwith numerical simulations, verifying the correct operation of the code and the physical
meaningfulness of results thus obtained is both vital and nontrivial. Even for comparatively basic
magnetic field configurations, the resulting family of nonlinear trajectories is typically not accessible
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to analytical solutions against which results could be gauged. In order to familiarize ourselves with
the relationship between a given three-dimensional field and the resulting shadow images, it was
found instructive to not only consider the binary shadow map itself, but also the general distortion
which the Lorentz force brings about for particles of given rigidity in a given field. Rather than
treating all trajectory endpoints which either end on the photosphere or at infinity as equivalent, we
therefore first considered a background pattern, expressed as a function � (U, X) of longitudinal (U)
and latitudinal (X) position on the “celestial sphere” at infinity, being placed behind the magnetized
region. The trajectory integrator thus maps a particle’s starting direction (U0, X0) when crossing
the viewing window to a final direction (U1, X1) at infinity, provided that the particle avoids the
photosphere. This method allows us to characterize the distorting effect of magnetic deflection by
imaging the distorted background � (U1, X1) as a function of the initial coordinates (U0, X0) in the
viewing window. It has proven very useful to compare the result with expectations motivated by
theoretical considerations, and was also instrumental to eliminate several coding errors from our
numerical tools. Figure 2 illustrates selected examples of typical images thus obtained.

4. Simulations vs. observations

For actual simulations, a model of the actual coronal magnetic field is needed. We start
from observed magnetograms (maps of the magnetic field components on the solar photosphere)
available from the Global Oscillation Network Group (GONG, http://gong.nso.edu) for a
given Carrington rotation, and assume that (i) field lines are purely radial at the so-called source
surface, a Sun-centered sphere of radius A = 2.5, and that (ii) the magnetic field in the intermediate
region A ∈ [1.0, 2.5] assumes its lowest-energy state, which is that of a potential (current-free)
field, ®� = −∇Ψ. The scalar potential Ψ may thus be obtained by solving the Laplace equation
∇2Ψ = ∇ · (∇Ψ) = −∇ · ®� = 0, for which we use the FDIPS [8] tool. Beyond the source surface,
field lines are continued in a divergence-free manner either with a simple radial 1/A2 dependence
or with the slightly more appropriate Parker spiral field [9].

Due to the fact that only sufficiently “straight” trajectories will produce a discernible shadow
image and the very low CR flux at these correspondingly high energies, IceCube data will typically
only allow for a single shadow image to be generated per season (covering about four months during
the Antarctic summer). On the other hand, magnetic surface features such as active regions change
on the somewhat shorter timescale of solar differential rotation of about 28 to 35 days (depending
on heliolatitude). This implies that a single artificial shadow image has to be averaged over (i)
several Carrington rotations and (ii) many (at least ∼ 36) different viewing angles during a given
Carrington rotation. This requires the solar magnetic field to be be rotated around the I-axis, or,
alternatively, the observer to revolve around this axis while keeping the static Sun’s projection
centered on the image plane. Both variants have been implemented and were shown to yield fully
equivalent shadow images. Finally, the aforementioned averaging additionally has to be performed
for various chemical elements, with the respective shadow images then averaged again, weighted
by the observed elementary composition of the incident CR spectrum. Figure 3 shows respective
sample shadow images for solar minimum and maximum conditions.

The most important quantity to be derived from the final shadow image is the shadow depth B,

4
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(A): no field (B): focusing loop (C): defocusing loop

(D): homogeneous sphere (E): monopole (F): point dipole

Figure 2: Test cases for magnetic ray tracing, using field configurations of increasing complexity in front
of a checkered background pattern at infinity. A: unmagnetized reference case (no field at all); B: closed,
ring-shaped field lines ®� =

(
I ®4H − H ®4I

) /√
H2 + I2 winding clockwise around the G-axis within a cylindrical

annulus
(
G,

√
H2 + I2

)
∈ [−0.2, +0.2]×[2.5, 5.0], creating a focusing lens with a pristine central region; C: the

same configuration except with the field direction reversed, creating a defocusing effect; D: a homogeneous
field ®� = 0.1 ®4I confined to a sphere of radius 5; E: a monopole field ®� = ®A/A3; and F: a I-aligned point
dipole ®� = −∇

(
I/A3) . In the last two cases, trajectories are discontinued upon intersecting the unit sphere

(corresponding to the solar photosphere), and the corresponding pixels are marked black. All test cases use
a nominal proton (/ = 1) energy of 800 TeV (back-tracing anti-protons) and magnetic field strength in units
of 1 G = 0.1mT. To guide the eye, blue lines mark circles of radii 1.0 (solid) and 2.5 (dashed).

defined via

B :=
Δl

c('�/30)2
#∑
8=1
(1 − �8) (4)

as the amount by which the intensity �8 of pixel 8 differs from the full background intensity (�8 = 1),
multiplied by the pixel’s angular area Δl, summed over all # ∼ 1002 pixels, and then normalized to
the size of the apparent solar disk. This quantity thus replicates the observational “relative deficit,”
with limiting cases of B = 1 for purely geometrical shadowing by a Sun-sized opaque sphere, and
B = 0 for no shadowing taking place at all.

The [ scaling of Equations (2) and (3) suggests that for a given field configuration, the
respective dependencies of B on both / and � can be condensed into one on rigidity % ∝ �// .
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Figure 3: Examples of fully averaged shadow images (left: solar minimum of 2008/09; right: solar
maximum of 2014/15) computed using the spectral CR composition according to [11]. Note the approximate
equatorial mirror symmetry in theminimum case (indicative of a leading-order dipole field, see test case ’F’ in
Figure 2) compared to the approximate centrical symmetry in the maximum case (indicative of approximate
leading-order radial symmetry, see test case ’E’ in said figure). The pronounced difference in shadow depth is
consistent with the trend shown in Figure 1. Taken from [10], wherein an extensive catalog of such computed
images is presented.

Figure 4: Sun shadow depth B for CR particles of various elements as a function of rigidity, calculated for
the 2008/09 (solar minimum, left) and 2014/15 (solar maximum, right) seasons. On the left, the total shadow
depth resulting from a point dipole is overplotted. Each of these data points (blue crosses) corresponds to a
shadow image, three of which are shown in Figure 5. Both datasets appear to agree best with a dimensionless
dipolar moment of 0.5, corresponding to a scaled field strength of 1 G = 0.1mT at the photospheric equator.
Adapted from [10].

Indeed, Figure 4 shows that for a range of elements, the respective curves of % ↦→ B(%) line up
to form a single graph. It also shows that both the monotonous dependence and shadow-reducing
effect of the coronal magnetic field (B < 1) reported previously by other groups is only found
for the solar maximum season of 2014/15. During the 2008/09 solar minimum, however, a clear
shadow maximum of nearly Bmax ≈ 1.3 is apparent. This striking feature cannot be explained by the
generally smaller coronal field strength, but is likely related to the very different field configuration
prevailing during solar minimum, which more closely resembles a large-scale dipolar field.

In order to investigate this conjecture, we have run a sequence of simulations of mono-energetic
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Figure 5: Shadow maps for a point dipole for proton energies of 50 (left), 10 (center), and 4 TeV (right).
Note the different fields of view relative to the solar photospheric disk (solid blue circle).

particles in a simple dipole as a crudemodel to the coronal magnetic field at times of solar minimum.
Figure 5 shows three selected binary shadow images, indicating the expected disk-like morphology
at high rigidities. At intermediate rigidities, the shadow area prominently exceeds that of the solar
disk, while at still lower rigidities the shadow fragments into several symmetric “islands” before
finally dissolving into the background. The shadow depth profile % ↦→ B(%) resulting from a large
number of such simulations has been overplotted on the left panel of Figure 4. As can clearly be
seen here as well, we obtain the expected geometrical limit B → 1 at very high energies, but then
find a larger shadow near 103.5 GV ≈ 3.2TV extending to Bmax ≈ 1.8.

This latter comparison raises the question of which dipolar field strength, if any, should be
considered “equivalent” to a given, more complex magnetic field in terms of its shadow-generating
capabilities. We may tentatively argue that for a homogeneous magnetic field filling a finite region
of space, the total deviation experienced by a traversing particle scales with (i) the magnitude of the
homogeneous field and (ii) the length of its magnetized path. Computing, in this vein, the volume
integral ( :=

∫
A ∈[1,2.5] | ®�| d+ for both the dipole and the potential field of Carrington rotation 2077

(December 2008) yields a ratio of (CR2077/(dipole ≈ 0.632, in surprisingly good agreement with the
ad hoc best-fit value of 0.5 used in the comparison shown in the left panel of Figure 4.

5. Conclusions

We have presented and analyzed artificial images of the Sun’s cosmic-ray shadow generated by
back-tracing of virtual anti-particles in a coronal magnetic field which derives from photospheric
boundary conditions in the absence of electric currents. We could confirm the trend previously
found in both simulation and observation according to which high solar activity correlates with weak
(sub-geometric) shadows, but mostly so for solar maximum conditions. The unexpected occurrence
of stronger-than-geometric shadows during solar minimum and its non-monotonous dependence on
rigidity could successfully be linked to the effect of a large-scale dipolar magnetic field. Although
more sophisticated simulations (as reported in, e.g. [4]) are available, it is the relative simplicity of
this dipolar case that makes it an ideal demonstrator of this novel effect.

While attempts to directly constrain the coronal magnetic field through Sun shadow obser-
vations are forestalled by the unfortunate discrepancy between observational and solar dynamic

7
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timescales, the presented investigations serve to strengthen this potentially fruitful link between
solar physics and high-energy cosmic rays, to be further explored in forthcoming investigations.
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