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is most often described by coupled equations for the dynamics of the thermal plasma and the
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1. Introduction

In recent years several authors have addressed the nonlinearity of the cosmic ray transport
in various astrophysical environments. The latter comprise the interstellar medium(e.g., Ptuskin
et al.(2008),Amato and Blasi (2018), Holcomb and Spitovsky (2019) [1–3]), supernova remnants
(e.g., Ptuskin et al. (2013), Bykov et al. (2014), Perri et al. (2016), Diesing and Caprioli (2019),
Nava et al. (2019) [4–8]), heliospheric shock acceleration (e.g., Lee et al. (2012) [9]), as well as
modulation (e.g. Moloto et al. (2018), Shalchi (2018) [10, 11]).

Most often the nonlinearity is described by two or more coupled differential equations for the
background plasma and its waves and the cosmic rays (e.g., Wiener et al. (2019)[12]). As an
alternative to solving these numerically we have recently investigated a single nonlinear transport
equation and techniques for analytical and semi analytical solutions ( Litvinenko et al. (2017), Litvi-
nenko et al. (2019)[13, 14]). These alternatives, which are based on a single advection-diffusion
equation with a diffusion coefficent depending on the (gradient of the) particle distribution function,
not only complement the development of the more detailed numerical models but also may guide
as well as help to test the latter. In Litvinenko et al. (2017)([13]) we have concentrated on the
implications of the nonlinearity for the so-called anomalous transport in one-dimensional, Cartesian
advective-diffusive systems. Furthermore in Litvinenko et al. (2019) ([14]) we have studied the
nonlinearity in the presence of time-varying source functions and the absense of advection. Now
we extend these analyses here to systems with radial symmetry and with time-dependent sources
as well as non-vanishing advection, which are often of interest in astrophysics, for instance for the
particle transport in the solar wind. The method that is applied in this paper will be able to deal with
advection, as well as time dependent sources and therefore combines the strengths of our previous
works, without having the restriction of earlier approaches. To highlight the broad applicability of
the mathematical method, we discuss a number of additional models, including different geometries
and nonlinear diffusion processes.

The diffusive part of the nonlinear transport equation reads

∂ f
∂t
= ∇ [D( f )∇ f ] (1)

We argued in Litvinenko et al. (2017) ([13]) that this formulation can be specified using the work
of Ptuskin et al. (2008) ([1]), so that the diffusive part can be framed as

D( f ) = D0( f̂0/r0)ν |∇ f |−ν (2)

In the presented work we want to give an analytical approximation for an energy dependent diffusion
advection equation of the form:

ft + V fx = (D0 | fx |ν fx)x +
1
3

dV
dx

fs +Q0 (3)

In this equation s = ln
(
p
p0

)
.
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2. Analytical method

The analytical method presented here bases on expanding the distribution function f in the
nonlinear parameter ν. So we insert the expression

f = f0 + ν f1 + ν2 f2 + ... (4)

into the transport equation 3. We sort the resulting terms in orders of ν and get the resulting set of
equations:

L f0 = Q0

L f1 = Q1

...

L fn = Qn

L = ∂

∂t
+ V

∂

∂x
− D0

∂2

∂x2 −
1
3

dV
dx

∂

∂s
Q1 = −D0

(
1 + ln

�� f0,x ��) f0,xx

Q2 = −D0

(
f1,x
f0,x
− 1

2
ln2 (�� f0,x ��) − ln

(�� f0,x ��) ) f0,xx

− D0
(
1 + ln

(�� f0,x ��) ) f1,xxetc. (5)

To solve this set of equations we use the fundamental solution Γ for the linear operator L, the
solution to fn results from a convolution of Γ and Qn.
The fundamental solution for L reads as:

Γ =
1

√
4πD0t

exp

[
−(x − Vt)2

4D0t

]
(6)

The convolution is done by integration:

fn (x, t) =
∫
Γcart (x − x0, t − t0)Qn (x0, t0) dt0dx0 (7)

We present a number of different solutions, for different values of D0, V etc, up to the second order
in ν. Throughout this presentation we take V = const., in the paper on which this presentation is
based on Walter et al. (2020) ([16]) we also take into account a decreasing velocity profile.

3. Various scenarios

Next to the basic method presented above, we also present a different geometry (spherical
geometry) and a different kind of nonlinear diffusion. The spherical geometry is motivated by
various astrophysical systems, the alternate nonlinear diffusion is motivated by a need for a more
consistent form of the diffusion in the case fx → 0.
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3.1 Spherical geometry

For the spherical geometry we take a look at the following nonlinear equation:

ft =
1
r2

(
r2D0 | fr |−ν fr

)
r
+Q0 (8)

By expanding this equation in the same way as before, we derive again a set of equations:

Lrad =
∂

∂t
− D0

1
r2

∂

∂r

(
r2 ∂

∂r

)
Lrad fn = Qn

Q1 = −
(
1 + ln

(�� f0,r ��) ) f0,rr −
1
r

ln
(�� f0,r ��) f0,r

Q2 = −
2
r

ln
(�� f0,r ��) f1,r −

2
r

f1,r − ln
(�� f0,r ��) f1,rr −

1
f0,r

f1,r f0,rr

− f1,rr + ln
(�� f0,r ��) f0,rr +

ln2 (�� f0,r ��)
2

f0,rr + ln2 �� f0,r �� f0,r
r

(9)

The fundamental corresponding Greensfunction and Greensformula were taken from Webb and
Gleeson (1977) ([15]) and only had to be slightly adjusted to fit our equations.

f (r, t) = 1
r2

∫ t

0
dt ′

∫ ∞

0
dr ′r ′2Q (r ′, t ′)G (r ′, r, t − t ′)

G (r ′, r, t − t ′) =
r
r′

2
√
π (t − t ′)

×
(
exp

(
−(r

′ − r)2

4 (t − t ′)

)
− exp

(
−(r

′ + r)2

4 (t − t ′)

))
(10)

We again present a number of different approximations up to the second order in ν.

3.2 Alternate nonlinearity

The diffusion coefficient of section 1 has the disadvantage of diverging for ν , 0 and fx = 0.
For numerical simulations this can be circumvented by taking a maximum value Dmax for D0 | fx |−ν.
Alternatively we can take the diffusion coefficient of the form:

D =
D̃

| fx |ν + λ0
(11)

In this formulation the parameters D̃ und λ0 has to be chosen, that the two limiting cases fx →
0⇒ D→ Dmax and ν → 0⇒ D→ D0 are satisfied. Taking this formulation, expanding f in the
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already known manner, we derive again a set of equations:

Lcons =
∂

∂t
+ V

∂

∂x
− D̃

1 + λ0

∂2

∂x2

Γcons =
1√

4π D̃
1+λ0

t
exp

−
(x − Vt)2

4 D̃
1+λ0

t


Q1 = −D̃

1 + ln
�� f0,x ��

(1 + λ0)2
f0,xx, (12)

Q2 = −D̃
ln

�� f0,x �� + 1
(1 + λ0)2

f1,xx + D̃
ln2 �� f0,x �� + 2 ln

�� f0,x ��
(1 + λ0)3

f0,xx

− D̃
1
2 ln2 �� f0,x �� + ln

�� f0,x ��
(1 + λ0)2

f0,xx − D̃
f1,x

(1 + λ0)2 f0,x
f0,xx (13)

We can solve this equations again, by convoluting the source terms with the given fundamental
solution.

4. Results,Discussion and Outlook

We present a seminanalytical formula to derive solutions to a distinct form of nonlinear
diffusion advection equations. We also present a selected number of results of scenarios of different
geometries and implementations of the diffusion coefficient, comparing them to much more time
intensive numerical results. We demonstrate The quality of the approximations is dependent on
the paramter ν. The results obtained for the monoenergetic transport equation can be used as the
groundwork for shock acceleration and non-constant velocity profiles. For more examples and
scenarios you can take a look at Walter et al.(2020, Phys.Pl.27,id.082901)([16]).
The analytical results obtained can be used in future works as a groundwork for transport nonlinear
transport equations, taking them as a reference point. Furthermore it is an imporevement to our
previous works on nonlinear diffusion, because it is able to deal with advection and non constant
sources.
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