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The input of local source information and propagation parmeters at a scale of O(10) pc are
necessary in order to accurately repeat the large scale 2D anisotropy of cosmic ray from TeV to
PeV. However, simulating the CR propagation using the normal finite-difference method (FDM)
with O(10) pc grids would occupy too much memory and thus could not be performed in usual
servers. To solve this problem, we suggested a non-uniform-grid method to allow a set of fine
enough grids in vicinity of the solar system. In this work, besides the decription and validation
of the method, our calculation successfully explains the observed transition of 2D cosmic ray
anisotropy map between TeV and PeV energies.
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1. Introduction

The 2-dimensional (2D) cosmic-ray (CR) anisotropy has been observed in a wide energy
region [1–21] from sub TeV to several PeV. In these observations, it is found that the amplitude of
CR anisotropy is around 10−3 in this region, and the phase of CR anisotropy around TeV is almost
opposite to that around PeV. The TeV measurements show the excess of CR flux around the direction
of the local regular magnetic field, while the PeV measurements show the excess of CR flux toward
the direction of the Galactic center.

This phenomenon could be attributed to a nearby source located around the Galactic anti-center
and/or the fact that CR would diffuse faster along the direction of the magnetic field [22–24]. The
Galactic magnetic field has been found to contain a notable large-scale regular component [25, 26]
whose direction would be rapidly changed nearby the Galactic disk. On the other hand, the
observation of the local regular magnetic field indicates an almost constant interstellar field within
a region ∼ 20 pc [27]. Simulating the effect caused by a magnetic field of this size would require a
resolution ∼ O(10) pc in the space. However, the numerical CR propagation solution with such a
high resolution would cost too much memory and is inaccessible for usual servers.

The CR propagation function is always numerically solved with the finite-difference method
(FDM), in which the Galaxy is usually divided into grids in size ∼ kpc [28, 29]. When all the grids
are directly shrunk to ∼ O(50) pc, over 1000 times of the memory would be required. Therefore,
we need a more efficient method that could shrink the target grids while avoiding unnecessary costs.

In this work, we first introduce a non-uniform-grid method to solve this efficiency problem.
Then two simple isotropic propagation cases are adopted to verify this method. Afterward, by using
this method, we take into account the injection effect from a nearby source and a propagation effect
due to the local regular magnetic field to calculate the large-scale 2D CR anisotropy.

The rest of this paper is organized as follows: In Sec. 2, we briefly introduce non-uniform-grid
method and verify it in two simple cases. In Sec. 3, we describe the anisotropic diffusion model
based on the Galactic large-scale regular magnetic field and perform a realistic simulation of CR
propagation. In the simulation, the contribution of a nearby source is also added. Sec. 4 is reserved
for the conclusion.

2. Non-uniform-grid method

In order to efficiently predict the local interstellar CR distribution with high resolution, we
divide the Galaxy into non-uniform grids. However, the well studied FDMs, i.e. the Crank-
Nicolson method and the Hundsdorfer-Verwer method [30], would always require uniform grids.
Therefore, we perform a non-linear coordinate transformation and ensure that the grids in the new
coordinate are uniform, then apply the FDM in the new coordinate to solve the propagation equation.

Denoting the origin physical coordinate (𝑥1, 𝑥2, 𝑥3) and the new coordinate (𝑥 ′1, 𝑥 ′2, 𝑥 ′3), then
we can describe the transformation as 𝑥𝑖 = 𝑓𝑖 (𝑥 ′𝑖). We carefully choose the transformation function
𝑓𝑖 to ensure that when the 𝑥 ′𝑖 evenly varying, the 𝑥𝑖 around the sun would change much slower than
that in the other position.
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Note that this transformation would also change the form of the propagation equation. The
propagation equation that contains only the diffuse effect is

𝜕

𝜕𝑡
𝜓 = 𝑞 +

∑
𝑖, 𝑗

𝜕

𝜕𝑥𝑖
𝐷𝑖 𝑗

𝜕

𝜕𝑥 𝑗
𝜓, (1)

where 𝜓 is the particle density, and 𝐷𝑖 𝑗 is the 3 × 3 diffusion tensor. When the non-diagonal term
of 𝐷𝑖 𝑗 is non-zero, this equation could describe the anisotropic propagation, i.e. the case in which
the CR particles propagate faster along the magnetic field [24]. As the particle number in a certain
grid is invariant, the transformation of particle density 𝜓 follows 𝜓d𝑥1d𝑥2d𝑥3 = 𝜓 ′d𝑥 ′1d𝑥 ′2d𝑥 ′3. For
the same reason, the transformation of source term 𝑞 follows 𝑞d𝑥1d𝑥2d𝑥3 = 𝑞′d𝑥 ′1d𝑥 ′2d𝑥 ′3. As a
result, Eq. 1 in the new coordinate is

𝜕

𝜕𝑡
𝜓 ′ = 𝑞′ +

∑
𝑖, 𝑗

𝜕

𝜕𝑥𝑖

𝐷𝑖 𝑗

𝑓 ′𝑗

𝜕

𝜕𝑥 𝑗

𝜓 ′

𝑓 ′𝑖
. (2)

In the non-uniform-grid method, we use the FDM to solve Eq. 2 and then transform the density
𝜓 ′ back to 𝜓 to obtain the final prediction of CR density. In order to validate this method, we
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Figure 1: Left: The comparison of result obtained from normal FDM method and non-uniform-grid method
for a simple 1D propagation toy model. Right: The same comparison but for the 𝑥-axis distribution of a 3D
isotropic propagation.

use this procedure to solve a 1-dimensional (1D) propagation equation and a 3-dimensional (3D)
isotropic propagation equation, and then compare their expectation with the result obtained from
normal FDM method in Fig. 1. It shows that the non-uniform-grid method consists with the normal
FDM method well in both 1-dimensional (1D) and 3-dimensional (3D) cases.

3. Prediction on CR anisotropy

The phase transition of the CR anisotropy is expected to be able to explained with a nearby CR
source together with the local interstellar magnetic field (LISM). In this section, we would adopt a
non-uniform-grid simulation to demonstrate this scenario quantitatively.
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The measurements of the CR proton spectrum show a break at tens of TeV [31, 32], which
indicates a nearby source whose contribution would dominant around TeV and cut at ∼ 30TeV [23].
Such a TeV CR source, when located opposite the Galactic center, would lead to the TeV anisotropy
direct towards the outside direction of the Galaxy. In this work, we assume that this nearby source
is the Supernova remnant (SNR) of Geminga. This SNR started to inject the CR particles about 340
thousand years ago. The Geminga is currently located at 250 pc away from the sun at the direction
(𝑙, 𝑏) = (175.2◦, 16.33◦) in Galactic coordinate [33]. With a projected velocity ∼ 200km/s, the
Geminga is supposed to be about 70 pc away from its original site 340 thousand years ago [34].
This uncertainty of the injection position is not so important for this work as our scenario is not
quite sensitive to the precise location of the nearby source. Therefore, we assume that the nearby
source is injected from a random position inside this 70 pc area.

On the other hand, the CR particles are supposed to propagate faster along the regular magnetic
field [24]. This anisotropic diffusion effect would decrease with the energy. At the energy ∼ TeV,
the diffusion is supposed to be anisotropic, thus the CR anisotropy would direct along the LISM [22]
and has less to do with the precise direction of the source. Around 100 TeV, the contribution from
the nearby source becomes negligible and thus the direction of CR anisotropy is directly inversed
but still direct along the LISM. For the energy above PeV, the diffusion becomes isotropic, and the
direction of CR flux excess would shift to the Galactic center.

In practice, we need to separate the contribution from the nearby source and that from all the
other sources. The former is calculated with an short-term injection thus its time step needed to be
carefully chosen to avoid the irreversible calculation error. The latter adopts a set of stable sources,
and the calculation error introduced by the large time steps would be finally suppressed when the
system converges.

At first, we calculate the contribution from the whole Galaxy except the nearby source. In this
calculation, the diffusion coefficient 𝐷𝑖 𝑗 is decomposed into two component, 𝐷 ∥ and 𝐷⊥, which
refer to the diffusion coefficient parallel to and perpendicular to the regular magnetic field. With
the regular magnetic field B given, the diffusion coefficient tensor follows the relation [24]

𝐷𝑖 𝑗 = 𝐷⊥𝛿𝑖 𝑗 + (𝐷 ∥ − 𝐷⊥)𝐵𝑖𝐵 𝑗/|B|2, (3)

where 𝐵𝑖 is the 𝑖-th component of the vector B.
The parallel and perpendicular components are assumed to follow two different power-law

𝐷 ∥ = 𝐷0∥

(
𝑅

𝑅0

) 𝛿∥
𝐷⊥ = 𝐷0⊥

(
𝑅

𝑅0

) 𝛿⊥
≡ 𝜀𝐷0∥

(
𝑅

𝑅0

) 𝛿⊥ , (4)

where 𝜀 ≡ 𝐷0⊥/𝐷0∥ is the ratio of the two components at the reference rigidity 𝑅0. Practically,
we would assume the index of the perpendicular component 𝛿⊥ to be larger than the index of the
parallel component 𝛿 ∥ , thus the ratio 𝐷⊥/𝐷 ∥ would increase with the energy. As there is no reason
for us to assume a faster propagation for the perpendicular direction, for energy region that 𝐷⊥ goes
larger than 𝐷 ∥ , we keep them the same and the diffusion becomes isotropic.

The regular magnetic field B is adopted following Ref. [24]. A little tunning is also performed
to ensure that the direction of B at solar system is consistent with the LISM.
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Figure 2: The 𝑥𝑂𝑦 distribution (right) derived in the anisotropic diffusion scenario around 6 TeV. The black
mark indicate the solar system.

With all the details mentioned above considered, we perform a non-uniform-grid simulation
to calculate the CR distribution with no nearby source and show the result in Fig. 2. It could be
seen that the CR particles are globally confined in a ring by the spiral Galactic regular field, and
our simulation could show more details around the solar system (8.3 kpc, 0 kpc).

With the same assumption on diffusion, we then perform a simulation for an instant injection
at the position of Geminga. We assumed that the injection happened 340 thousand years ago, and
its injection spectrum is a power-law with an index ∼ −2.3 and an exponential cut at 40TeV. We
sum up the contribution from this source and the contribution shown in Fig. 2 and use the final
distribution to derive the 2D CR anisotropy observed at the earth. The calcuated 2D CR anisotropy

Figure 3: The 2D CR anisotropy predicted at 2.5 TeV (left) and 1.6 PeV (right).

for different energies is shown in Fig. 3. It could be seen that the direction of the excess of CR flux
is reversed along the LISM as the energy increased.
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4. Conclusion

In this work, we introduced a non-uniform-grid method to approach a high-resolution simu-
lation around the sun. We performed two simple cases to verify the validity of this method. This
method is then applied to an anisotropic diffusion model described by a realistic Galactic large-scale
regular magnetic field. Taking into account the nearby source in this model, we finally reach a
reasonable explanation of the phase transition on CR anisotropy observation. In the future, we
would consider more details in the simulation and approach the calculation for higher energy and
show that the excess of CR flux would finally direct to the Galactic center.
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