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1. Introduction

The arrival directions of Galactic cosmic rays (CRs) are expected to be highly isotropic
due to the interaction of these particles with interstellar turbulent magnetic fields. This random
scattering process effectively isotropizes their arrival directions and leads to the diffusive transport of
CRs. Current high-statistics observatories like IceCube [1] and HAWC [2] have however observed
significant deviations from isotropy down to angular scales of 10◦. These deviations from an
isotropic CR arrival direction map can be quantified by the angular power spectrum (APS) defined
as

𝐶ℓ (𝑡) =
1

4𝜋

∫
dp̂𝐴

∫
dp̂𝐵𝑃ℓ (p̂𝐴 · p̂𝐵) 𝑓𝐴(®𝑟⊕, p𝐴, 𝑡) 𝑓𝐵 (®𝑟⊕, p𝐵, 𝑡), (1)

where p̂ = p/|p| is a unit momentum vector and 𝑓 (r⊕, p, 𝑡) is the phase-space density measured by
an observer at position r⊕ and time 𝑡 from direction p̂.

Interestingly, it has been suggested that the turbulent magnetic fields could be a potential source
of small-scale anisotropies [3]. This idea has been investigated using test particle simulations of
CRs in simulated turbulence. A map of the CR arrival directions can be obtained from the phase
space density back-tracked along the cosmic ray trajectories to an earlier time (see [4] for a review).
Most of the previous studies, however, limit themselves to particles with a ratio of Larmor radius
to outer scale 𝜌 = 𝑟𝑔/𝐿max ∼ 10−2 − 101. This corresponds to energies much larger than what
is relevant for observational data, 𝜌 . 10−3, assuming a typical value of the Galactic magnetic
field [5]. In that case, it might not be straightforward to make the direct comparison between the
simulated and observed APS.

More importantly, the standard picture of CR transport known as quasi-linear theory (QLT)
fails to explain the observed anisotropy at scales smaller than the dipole since it allows computing
only the ensemble average of the phase-space density 〈 𝑓 〉. This means that one has to assume
〈 𝑓𝐴 𝑓𝐵〉 = 〈 𝑓𝐴〉〈 𝑓𝐵〉 in order to calculate the ensemble averaged APS from Eq. (1). While under
these assumptions the ensemble averaged APS from standard QLT 〈𝐶ℓ〉std ∼ 0 for ℓ ≥ 2 taking
the correlations of phase-space densities into account correctly can lead to a larger APS since
〈 𝑓𝐴 𝑓𝐵〉 ≥ 〈 𝑓𝐴〉〈 𝑓𝐵〉 [5]. These correlations are expected to be present since particles arriving
under an angle 𝜃 propagate through a single realization of the turbulent magnetic field. They
will therefore experience similar magnetic fields. The authors of Ref. [6] take into account these
correlations and put forward a model to predict the APS based on a perturbative expansion of the
time-evolution operator. However, a rather unrealistic white-noise power spectrum of turbulence
was adopted to allow for some explicit analytical results.

The aim of this work is, thus, to further improve our understanding of turbulence induced
small-scale anisotropies from both the simulational and analytical points of view. We will first
present an extended version of the analytical framework to calculate the APS introduced in Ref. [6]
for the case of slab turbulence. The results are then compared to the simulated APS in the energy
range relevant for observations for a given turbulence model.
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2. Analytical Calculation

We follow the steps outlined in Ref. [6]. For further details we refer to this paper and references
therein. The time evolution of the phase-space density 𝑓 is described by Liouville’s equation

𝜕𝑡 𝑓 + p̂∇ 𝑓 + L 𝑓 = −𝛿L 𝑓 , (2)

where L = −𝑖𝛀 · 𝐿 and 𝛿L = −𝑖𝜔 · L are the relativistic and stochastic Liouville operators. Here
𝛀 = 𝑞B0/𝑝0 and 𝜔 = 𝑞𝛿B/𝑝0 denote the gyrovectors in the regular and turbulent magnetic fields
respectively and L is a vector of angular momentum operators that obey the usual commutation
relations [𝐿𝑖 , 𝐿 𝑗] = 𝑖𝜖𝑖 𝑗𝑘𝐿𝑘 . After expanding the phase-space density around the position of the
observer this equation can be solved formally by introducing a time evolution operator

𝑈𝑡 ,𝑡0 = T exp
[
−

∫ 𝑡

𝑡0

d𝑡 ′(L + 𝛿L(𝑡 ′))
]
, (3)

with the time ordered exponential.
Similar to Feynman diagrams in quantum field theory the correlation of the time evolution

operators can be expanded diagrammatically in the the strength of the turbulent magnetic field,

〈UA
t,t0U

B∗
t,t0〉 = +

(
+ +

)
+

(
+

+ + + + + + +

+ +

)
+ . . .

1

(4)

We will limit ourselves to a first order calculation and only compute the diagrams up to and
including the first parenthesis. With this correlation of the time evolution operators we can then
define the mixing matrix

𝑀ℓℓ0 (𝑡, 𝑡0) =
1

4𝜋

∫
dp̂𝐴

∫
dp̂𝐵𝑃ℓ (p̂𝐴 · p̂𝐵)〈𝑈𝐴

𝑡,𝑡0𝑈
𝐵∗
𝑡 ,𝑡0〉

2ℓ0 + 1
4𝜋

𝑃ℓ0 (p̂𝐴 · p̂𝐵), (5)

as the projection of 〈𝑈𝐴
𝑡,𝑡0
𝑈𝐵∗
𝑡 ,𝑡0

〉 into the space of statistically isotropic 〈 𝑓𝐴 𝑓𝐵〉. Making a gradient
ansatz for the phase-space density a differential equation for the local time evolution of the angular
power spectrum can be derived. The steady state angular power spectrum can be shown to satisfy

𝛿ℓℓ0 − 𝑀ℓℓ0 (Δ𝑇)
Δ𝑇

𝐶
stdy
ℓ0

(𝑡) = 8𝜋
9
𝐾 |∇ 𝑓 |2𝛿ℓ1, (6)

with the diffusion tensor 𝐾 and CR gradient ∇ 𝑓 . The right hand side of this equation can be
interpreted as a dipole term sourced by a CR gradient according to Fick’s law. The left hand side
describes how power from the dipole source is mixed into higher multipoles by the mixing matrix.
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Assuming slab turbulence we find for the mixing matrix

𝑀ℓℓ0 = 𝛿ℓℓ0 − 8𝜋ℓ(ℓ + 1)
(
2
3
Λ0(Δ𝑇) −

1
3
Λ2(Δ𝑇)

)
𝛿ℓℓ0

+ 2𝜋
∑︁
ℓ𝐴,ℓ𝐵

𝑖ℓ𝐵−ℓ𝐴 (2ℓ0 + 1) (2𝑙𝐴 + 1) (2𝑙𝐵 + 1) 1
2

(
ℓ𝐴 ℓ ℓ0

0 0 0

) (
ℓ𝐵 ℓ ℓ0

0 0 0

)
× (1 + (−1)ℓ𝐴+ℓ𝐵 )

∑︁
𝑚0,𝑚

(
(2ℓ0(ℓ0 + 1) − 2𝑚2

0)
(
ℓ𝐴 ℓ ℓ0

0 𝑚 𝑚0

) (
ℓ𝐵 ℓ ℓ0

0 𝑚 𝑚0

)
𝜅ℓ𝐴,ℓ𝐵 (Δ𝑇)

) (7)

where (: : :) denotes the Wigner 3j symbol and Λ𝑖 (Δ𝑇) and 𝜅𝑖 (Δ𝑇) are integrals defined as

Λℓ𝐴 (Δ𝑇) =
∫ Δ𝑇

0
d𝑇

∫ 𝑇

0
d𝜏

∫
d𝑘 𝑔(𝑘) cos (Ω𝜏) 𝑗ℓ𝐴 (𝑘𝜏) (8)

and

𝜅ℓ𝐴,ℓ𝐵 (Δ𝑇) =
∫ 𝑡

𝑡0

d𝑡1
∫ 𝑡

𝑡0

d𝑡2
∫

d𝑘 𝑔(𝑘) 𝑗ℓ𝐴 (𝑘 (𝑡 − 𝑡1)) 𝑗ℓ𝐵 (𝑘 (𝑡 − 𝑡2)) cos(Ω(𝑡1 − 𝑡2)), (9)

involving the power spectrum of magnetic turbulence 𝑔(𝑘), defined as the magnitude dependent
part of the Fourier transform of the magnetic two point correlation function 𝑔(𝑘) (𝛿𝑖 𝑗 + 𝑘𝑖𝑘 𝑗/𝑘2) =
1/(2𝜋)3

∫
d3𝑥 exp (−𝑖®𝑘 · ®𝑥)〈𝛿𝐵𝑖 (®𝑥0)𝛿𝐵 𝑗 (®𝑥0 + ®𝑥)〉 and the spherical Bessel functions 𝑗ℓ (𝑥).

The terms in the first line of eq. (7) describe the pitchangle scattering known from QLT. Since
this part of the mixing matrix is diagonal they do not lead to mixing between different multipoles.
If it was for these to contributions only, the steady-state APS would be only dipolar. The third term
in eq. (7) comes from including the correlations and this is what leads to a non-vanishing angular
power spectrum at larger multipoles ℓ.

Putting these contributions to the mixing matrix together Eq. (6) can be solved numerically to
get the steady state angular power spectrum. The resulting angular power spectrum for different
values of the remaining model parameter ΩΔ𝑇 is shown in fig. 1.

3. Numerical Simulation

To verify the results of our analytical calculation we use numerical simulations of testparticles in
synthetic turbulence [7]. The monoenergetic testparticles are initialized at the origin with isotropic
directions on a HEALPix [8] grid with 𝑁side = 256 or 512 leading to a total number of testparticles
𝑁particles ∼ 8 × 105 and 3 × 106. These particles are then tracked back in time through the magnetic
field by solving the Newton-Lorentz equations using the energy conserving Boris method [9]. As
the testparticles do not interact with each other or backreact on the magnetic field this can be
parallelized very efficiently. We therefore run these simulations on GPUs which allow for efficient
parallelisation. For all simulations we choose a maximal wavelength 𝐿max = 150 pc [10] and a
total root mean square magnetic field strength

√︃
𝐵2

0 + 〈𝛿𝐵2〉 = 4 𝜇𝐺 [11]. The turbulence level
𝜂 = 〈𝛿𝐵2〉/(𝐵2

0 + 〈𝛿𝐵2〉) is varied between 0.1 and 0.5 [11].
In the literature two different methods have been used to generate synthetic magnetic field

turbulence. In the method proposed by Giacalone and Jokipii [12], the magnetic field is calculated
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Figure 1: Angular power spectra from the analytical calculation normalised to the dipole as a function of ℓ.
The value of the parameter ΩΔ𝑇 is colour-coded.

as a superposition of waves. Only the phases and amplitudes for the waves are stored. In the other
method the magnetic field is set up on a grid in Fourier space, transformed to and saved in real
space. This has the advantage that no large sums have to be evaluated at every particle position. The
magnetic field evaluation is reduced to a simple interpolation between grid points. The disadvantage
is the large amount of memory required to store the entire field grid.

The rigidity of particles required to compare to observational data from IceCube and HAWC
is of the order of 10 TV. The resulting gyroradii and thus also the minimal wavelength that needs
to be resolved in our simulations is therefore 𝑟𝑔 ∼ 2.5 × 10−3 pc. Even though there could be
artefacts due to grid periodicity, it has proven sufficient to make the grid a factor of 8 larger than
the largest wavelength. The smallest wavelength is chosen a factor 20 smaller than the gyroradius
of the particles and resolved by at least 10 grid points. Spanning this large dynamical range with a
single grid would require at least 𝑛 = 96, 000, 000 grid points. To reduce the memory requirement
on our GPUs we therefore use 3 nested grids with different grid spacings as proposed by [13].
Each individual grid covers a part of the magnetic field power spectrum. The 3 grids are then
superimposed. An illustration of the nested grid method for 2 grids without padding is shown in
Fig. 2.

In section 2 the angular power spectrum was calculated by evolving an assumed initial phase-
space density forward in time using a differential equation derived from the Vlasov equation. To
calculate the angular power spectrum from the backtracked particle trajectories the local phase-
space density at time 𝑡 𝑓 (r = 0, p, 𝑡) is related to the phase-space density at an earlier time 𝑡 − 𝑇
along a CR trajectory 𝑖, with coordinate r𝑖 (𝑡) and momentum p𝑖 (𝑡) using Liouville’s theorem

𝑓𝑖 (r𝑖 = 0, p𝑖 , 𝑡) = 𝑓 (r𝑖 (𝑡 − 𝑇), p𝑖 (𝑡 − 𝑇), 𝑡 − 𝑇). (10)

Assuming a quasi stationary solution to the diffusion equation 〈 𝑓𝑖 (𝑡 − 𝑇)〉 ' 𝑓 − 3p̂𝑖 · K · ∇ 𝑓 and
only small fluctuations from the ensemble average 𝛿 𝑓 = 𝑓 − 〈 𝑓 〉 the phase-space density at 𝑡 is

5
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Figure 2: Illustration of the nested grid method. The cube on the left shows the small grid used to resolve
the short wavelengths. It is then replicated multiple times to span the simulation volume. The cube in the
centre shows the large grid used to resolve the long wavelenghts. The right cube is given by the superposition
of the two cubes and contains both long and short wavelengths.

given by

𝑓𝑖 (𝑡) ' 𝛿 𝑓 (r𝑖 (𝑡 − 𝑇), p𝑖 (𝑡 − 𝑇), 𝑡 − 𝑇) + 𝑓 + ri(𝑡 − 𝑇) · ∇ 𝑓 − 3p̂𝑖 (𝑡 − 𝑇) · K · ∇ 𝑓 . (11)

The two methods of calculating the angular power spectrum are of course equivalent. The angular
power spectrum calculated from the numerical simulations converges to a constant angular power
spectrum for large times. This is due to the angular power spectrum being sensitive only to the
realization of the local magnetic field.

Even for a large number of particles the higher multipoles of the angular power spectrum are
strongly effected by shot noise. For large backtracking times it can be estimated as [5]

N =
4𝜋
𝑁pix

2𝑇𝐾𝑖 𝑗

𝜕𝑖 𝑓 𝜕 𝑗 𝑓

𝑓 2
, (12)

where 𝑁pix is the number of pixels in the arrival direction skymap which in this case is equal to the
number of particles in the simulation. The noise-subtracted power spectrum can be estimated [14]
via 𝐶ℓ = 〈𝐶ℓ〉 − N with the variance 𝜎2(𝐶ℓ) ' 2N2/(2ℓ + 1).

4. Results

The steady state APS shown in Fig. 1 exhibit a power law-like falling behaviour in ℓ with a
slope that depends on the parameter ΩΔ𝑇 . For large ΩΔ𝑇 the power spectrum drops off faster than
for small ΩΔ𝑇 .

This parameter can be interpreted as the number of gyrotimes over which correlations in the 1c
diagram decay. In QLT the particles trajectories are approximated as unperturbed trajectories. The
particles can thus interact with the waves for an infinitely long time leading to a sharp resonance.
In reality however particles trajectories are perturbed by the interactions with the turbulent field
leading to a decay of correlations on a timescale related to the scattering time 𝜏𝑠.

The angular power spectra from the numerical simulations are shown in fig. 3. They also fall
like a powerlaw in ℓ with the slope being larger for smaller energies. Also shown are the best fit
lines from the set of analytical solutions.

6
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Figure 3: Angular power spectra of the arrival directions of CRs. The points show the angular power spectra
computed from the results of test particle simulations in slab turbulence with a turbulence level of 𝜂 = 0.5.
Also shown is the best fit line from the analytical results for each individual energy. The numerical and
analytical results agree well down to the smallest angular scales.

From the resonance structure of the contribution of the interacting diagram we expect the ΩΔ𝑇
parameter to be related to the scattering time via ΩΔ𝑇 ∝ (Ω𝜏𝑠)1/3. This relation is confirmed by
the best fit ΩΔ𝑇 . Measuring the angular power spectrum thus gives an independent handle on Ω𝜏𝑠.

5. Conclusion

The angular power spectrum of CR arrival directions is an important observable. If it is indeed
sourced by correlations of particles experiencing the same turbulent magnetic field it can be used to
understand the local field configuration. Understanding the origin of the angular power spectrum is
therefore important as an independent probe of the outer scale of turbulence and the local turbulence
geometry.

Here we have used a perturbative calculation to predict the angular power spectrum of CR arrival
directions taking into account the correlations of phase space densities implied by the correlations
in the turbulent magnetic field. We have assumed a homogeneous background magnetic field
such that the unperturbed orbits are helical. The perturbative expansion up to first order in the
turbulence strength then includeds resonance effects between particles and the turbulent magnetic
field similarly to QLT. The difference in the angular power spectrum compared to QLT arises because
also correlations between phase-space densities that are induced by particles travelling through the
same field realization are treated explicitly. This leads to a finite angular power spectrum even at
larger multipoles ℓ.

To validate and test the assumptions that were made in this calculation we have compared to
testparticle simulations done in the same turbulence model at the rigidities relevant for observations
by IceCube and HAWC. This comparison shows very good agreement between the analytical model
and the numerical testparticle simulations.
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