PROCEEDINGS

oF SCIENCE

[/~ ICRC 2021

A THE ASTROPARTICLE PHYSICS CONFERENCE
4 Berlin | German v

1 |

LOgging UnifieD for ASTRI Mini Array

Federico Incardona,®!* Alessandro Costa,*! Kevin Munari,*! Pietro Bruno,”!
Andrea Bulgarelli,’-! Stefano Germani,”! Alessandro Grillo,*' Joseph Schwarz,'!
Eva Sciacca,”! Gino Tosti,”>! Fabio Vitello® and Giuseppe Tudisco®

AINAF, Osservatorio Astrofisico di Catania, Via S Sofia 78, I-95123 Catania, ITALY
bUniversita di Perugia, Dipartimento di Fisica e Geologia, IT

€¢INAF, Osservatorio Astronomico di Brera, IT

4INAF, Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, IT

¢INAF, Istituto di Radiastronomia, Bologna, IT

E-mail: federico.incardona@inaf.it

The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Mini-Array (MA) project is
an international collaboration led by the Italian National Institute for Astrophysics INAF). ASTRI
MA is composed of nine Cherenkov telescopes operating in the energy range 1-100 TeV, and it
aims to study very high-energy gamma ray astrophysics and optical intensity interferometry of
bright stars. ASTRI MA is currently under construction, and will be installed at the site of the
Teide Observatory in Tenerife (Spain). The hardware and software system that is responsible of
monitoring and controlling all the operations carried out at the ASTRI MA site is the Supervision
Control and Data Acquisition (SCADA). The LOgging UnifieD (LOUD) subsystem is one of the
main components of SCADA. It provides the service responsible for collecting, filtering, exposing
and storing log events collected by all the array elements (telescopes, LIDAR, devices, etc.). In this
paper, we present the LOUD architecture and the software stack explicitly designed for distributed
computing environments exploiting Internet of Things technologies (IoT).

37" International Cosmic Ray Conference (ICRC 2021)
July 12th — 23rd, 2021

Online — Berlin, Germany

Hfor the ASTRI Project: http://astri.me.oa-brera.inaf.it/
*Presenter

© Copyright owned by the author(s) under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:federico.incardona@inaf.it
https://pos.sissa.it/

LOUD system for ASTRI Mini Array Federico Incardona

1. Introduction

The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Mini-Array (MA)
[1] will be a gamma-ray telescope array operating in the energy range 1-100 TeV and beyond
from the Teide Observatory, Instituto de Astrofisica de Canarias (IAC), in Tenerife. Gamma-
ray astronomy allows the investigation of several dramatic phenomena in our Universe, such as
supernova explosions or Active Galactic Nuclei and dark matter. The ASTRI MA project was
conceived in 2010 by INAF to support the development of technologies whitin the Cherenkov
Telescope Array (CTA) project [2, 3]. A prototype of the ASTRI telescope [4] is installed in Italy
at the INAF observing station located in Serra La Nave (Mt. Etna, Sicily), while the final array will
consist of nine Cherenkov telescopes and cameras.

This paper presents the LOgging UnifieD (LOUD) software architecture in the context of
SCADA, the software responsible of controlling all the telescope operations. This architecture
takes advantage of continuing technological evolution [5] to respond to the challenges posed by
the operation of the array, in particular to satisfy the reliability, availability and maintainability
requirements of all its sub-systems and auxiliary devices. The system architecture has been designed
to scale up with the number of devices to be monitored and with the number of software components
to be taken into account in the distributed logging system. Internet of Things (IoT) technology allows
to address the data collection from all the devices connected to the telescopes and all the other array
elements.

The paper is organized as follows. Section 2 introduces the architecture of the LOUD logging
system; Section 3 presents the data model and throughput; Section 4 describes the technologies and
the software deployment on which our system relies on; Section 5 is for the conclusions and the
future perspectives.

2. LOUD System Architecture

LOUD is responsible for acquiring logging files from all the elements of the ASTRI MA.
The main building blocks of LOUD are five Logging components: Collector, Analyzer, Storage,
Manager and Master. The logical architecture of the Logging System is shown in Fig. 1.

The Logging Collector gets logging information from relevant software components and assemblies,
which comes in three ways as described in Section 3. The Logging Collector is composed, in turn,
of a set of Log Shippers and of an instance of Log Aggregator (Fig. 2).

The Log Shippers are low-footprint and resource-efficient daemons that harvest a set of log files.
Each Log Shipper is designed to run on a single host and gathers the set of log files produced on
that machine. A Log Shipper extracts and acquires log events offering a buffer functionality and
implementing back-pressure strategies towards the downstream components. Log shippers filter
only those events of the required level, and send them to the Log Aggregator.

The Log Aggregator processes log events from Log Shippers, and sends them to Logging Storage
and Logging Analyzer through a queue mechanism. A Collector based on a Log Shipper technology
has been preferred over a logging library because, in a production environment, a higher reliability
is provided by the mechanism of buffering implemented by a single Log Shipper. Besides, a Log
Shipper implementation would be more resilient to network issues, or to congestions on the data

LOUD system for ASTRI Mini Array Federico Incardona

«subsystem» ﬂ
Logging System

5 T Administration Command ____ o3 Logging]
Central Control Master Cemmmnn -

ORmmmmmmmmmommmmomommmmmosmsoommooooooeos K Administration

Initialize and 1 Command
Shutdown 1
:
:
:

Command Logging g]
O<--zzzz::>—{]Manager [J—O<---- !
A A
_) _ [-+ Aggregated Logs bon-3 L) Log 3] _ Alarm
Logging Configuration | e e e e e e > Analyzer [J—C------3
Configuration

i
L

Software and
| Assembly Logs

Storage

Figure 1: Logical view of LOUD. Log sources are Alma Common Software (ACS) components, OPC UA
servers and low-level software.

Logging Collector

Data Sources | og Shippers Log Event Schema
| r'\ ; /// Logging Storage
| Machine 4 e
Machne 1 Log file | -
Log Shipper 1 sein 1 @ e

Log Aggregator

Log Queue

Machine 2 -
Log fila
Log Shipper 2 “

. B

Machine 3 setn3
Log Shipper 3

E Ch EE
S

Logging Analyzer

Figure 2: Architecture of the Logging Collector.

channel implemented by the logging libraries, and it also minimizes the network load, since data is
sent in batches and not individually.

The Logging Analyzer is responsible to analyse logging data information to trigger further alarms
as well as warnings for the technical crew.
The Logging Storage stores logging events quantities according to desired log entry level.
The Logging Manager component interacts via the Logging Master with the Central Control (CC),
which is the SCADA component that manages and administrates all the subsystems. It receives
start-up and shut-down commands, and passes them to the LOUD systems. It provides also the
LOUD status information to the CC.
The Logging Master implements and exposes to the CC a standard state machine that implements
the system life cycle in a standardized way, in order to keep track of the health and the activation
condition of LOUD, and to simplify the integration with other subsystems.
The proposed architecture is centralized, so that all log entries generated in the SCADA system can

LOUD system for ASTRI Mini Array Federico Incardona

reach the central Log Aggregator. The order of the log entries is defined by their timestamp (see
Section 3). The Logging System allows for filtering, so that log entries with insufficient priority do
not get logged, whereas those with high priority get routed promptly to a dedicated high priority
queue. The distributed Logging Collector allows for filtering log entries at the level of Log Shipper
and Log Aggregator.

3. Data model

The elements of the ASTRI MA are composed of hardware and application software elements.

Software components, as well as SCADA, generate logs through their functioning, which record
events taking place in the execution of the program in order to provide a recorded trail that can be
used to understand the activity of the system and to diagnose (usually “post mortem”) problems.
They are essential to understand the activities of complex systems, particularly in the case of
automatized applications with little user interaction. The software logs are archived for the usage
of the software maintenance.
LOUD provides a standardized infrastructure for logging data sources via software within the array
element control systems. This ensures the required modularity, flexibility, and performance since
logging is, in general, a 24/7 activity that shall occur any time the corresponding software process
is running.

In this section, we describe the logging data exchange of the interface between the LOUD
system (the target system) and a software application contained in a generic element of ASTRI MA
(the source system).

The logging information is transferred from the data source components to SCADA in three ways:

Alma Common Software (ACS): ACS components use the standard ACS logging mechanism
to insert logs [6]. LOUD is able to catch these logs and to drive them into its pipeline;

OPC UA: OPC UA servers use the OPC UA logging infrastructure [7]. Logs are stored in
LOUD by placing log entries in files that are stored in a folder structure;

Low-level software logs: Low-level software processes, which are not using ACS or OPC
UA, store logs in the same way as OPC UA logs.

Irrespective of the logging mechanism used, the elemets of ASTRI MA insert low-level logs by
piping log data into files located in the on-site data centre.

The volume of the logs produced by the software components is tuned properly in order to avoid
generating excessive logging information during regular operations, but, also, to provide enough
information during debugging campaigns. This is achieved by means of configurable filtering based
on logging levels, as described in Section 2.

Log files used for OPC UA and low-level software are plain ASCII files UTF-8 encoding with
extension ".log". The file name follows the naming scheme:

componentlnstanceName_<YYYY>-<MM=>-<DD>.log,

for the currently active log file, and:

LOUD system for ASTRI Mini Array Federico Incardona

componentinstanceName_<YYYY>-<MM=>-<DD>.<num>.log,

for files generated earlier in the same folder, where: componentlnstanceName is the name of
the instance of the component creating the logs, <YYYY>-<MM>-<DD> is the UTC date corre-
sponding to the instant when the file is opened, and <num> is an integer number starting from 1 for
the first log file created during the day, and increasing monotonically for additional log files created
the same day.

A software logging file contains one line per new log entry, which will follow this structure:

<sourceTimestamp> <loggingLevel> <file> <line> <routine> <sourceObject> <logAudience>
<Message>.

The <sourceTimestamp> field specify the UTC time when the log file was generated, follow-
ing the ISOT (ISO 8601) time format:

YY-MM-DDTHH :mm:ss,

where YY is year, MM is month, DD is day, HH is hour, mm is minute, and ss is second with
a precision to one millisecond.

The <loggingLevel> field describes the level of the log entry in term of priority according to the
categorization defined by SCADA, in the following way:

TRACE: generated whenever a function is entered, and used to report calls to a function;
DEBUG: used only for system debugging;

DELOUSE: provides the highest level of detail for debugging the system;

INFO: used to publish information of interest during the normal operation of the system;

NOTICE: useful for logging normal but significant activity of the system, for example startup
or shutdown of individual services. They denote important situations in the system, but not
necessarily error/fault conditions;

WARN: used to report to conditions that are not errors but that could lead to errors/problems;
ERROR: denotes error conditions;

CRITICAL: indicates an Alarm condition that shall be reported to the operators through the
Human Machine Interface (HMI);

ALERT: denotes an Alarm condition that shall be reported to the operators through the HMI.
This indicates a problem more important than Critical;

EMERGENCY: denotes an Alarm condition of the highest priority.

LOUD system for ASTRI Mini Array Federico Incardona

The <file>, <line> and <routine> fields are optional and describe, respectively, the identification
of the source file, the line number in the source code where the log entry was submitted, and the
name of the function where the log entry was submitted from.

<sourceObject> and <logAudience> are the name of the process from which the log entry was
generated and the audience of this log, respectively, while <message> is the real log message,
which must include meaningful information that is relevant for the log audience.

3.1 Logging data throughput

At any given time, all the logs produced by all the applications belonging to an element of
the ASTRI MA will not produce a data volume higher than 10 MB/s, including, in the case of a
telescope, all the log files produced by the applications associated to the telescope itself and to the
host structure. This value does not consider any kind of compression or later filtering in SCADA.
In the framework of ASTRI SCADA, for storing log information, we expect a maximum data rate
in input of about 200 Mbps.

4. System Deployment

The LOUD system is written in Java programming language and it is integrated with the ALMA
Common Software (ACS), an open-source framework on which relies the software operating the
ALMA observatory. Since ACS allows the usage of Java, C++ and Python programming languages,
our system is able to accept logging API written in any one of these languages.

We build and manage our Java-based system in an automated way, through Apache Maven [8].

To exchange the acquired data among the heterogeneous SCADA subsystems, we use Apache Avro
[9], a data serialization framework that, in turn, uses JSON [10] for defining schemas for information
transmission.

We use Apache Kafka [11] to manage the data flow. Kafka is a distributed event streaming platform
designed to handle data streams from multiple sources and deliver them to multiple consumers.

To forward and centralize logs generated by SCADA, we use a set of distributed lightweight Log
Shippers (see Section 2) based on Elastic Filebeat [12]. Those log events are ingested, filtered and
manipulated by a centralized Log Aggregator (Section 2) based on Elastic Logstash [13], which
acts as a data processing pipeline that, in turn, sends them to Kafka.

We exploit Apache Cassandra [14, 15] as our database management system (DBMS), which is
specifically designed to handle large amounts of data [16].

We make use of the Docker platform [17] that provides the ability to package and run an application
in a loosely isolated environment called container.

Finally, to easily distribute, replicate and scale our containerized applications we exploit the Kuber-
netes orchestrator [18].

4.1 Log Simulator

To test our architecture and software deployment, we have developed a Log Simulator in
Python.
The simulator is able to produce a number of log files in parallel, in the expected format. The log

LOUD system for ASTRI Mini Array Federico Incardona

entries are randomly chosen from a lookup table, a small database obtained by real log data. The
values are sampled with a configurable probability distribution based on the log level. In this way,
it is possible to obtain a series of log files whose log level entries are distributed according to the
purpose of the simulation. This is useful in the test phase since it allows the user to reproduce
several behaviours of the logging production, e.g. in normal working or in ad hoc conditions.
Besides, the simulator is able to generate log entries with a desired production rate for each log file.

5. Conclusion and Future Perspectives

We presented the architecture of the LOgging UnifieD (LOUD) system that is responsible for
gathering, filtering, exposing and storing logs data, which are needed to record the operational
activities of a telescope array. LOUD was designed and built exploiting the current most advanced
technologies in the field of the Internet of Things, and it is based on open source software. In the
future, we plan to integrate Deep Learning algorithms to perform anomaly detection and failure
prediction based on the log events.

Acknowledgments

This work was conducted in the context of the ASTRI Project. This work is supported
by the Italian Ministry of Education, University, and Research (MIUR) with funds specifically
assigned to the Italian National Institute of Astrophysics (INAF). We acknowledge support from the
Brazilian Funding Agency FAPESP (Grant 2013/10559-5) and from the South African Department
of Science and Technology through Funding Agreement 0227/2014 for the South African Gamma-
Ray Astronomy Programme. IAC is supported by the Spanish Ministry of Science and Innovation
(MICIU).

References

[1] L.A. Antonelli, The astri mini-array at teide observatory, in 37th International Cosmic Ray
Conference (ICRC2021), vol. This Proceeding of International Cosmic Ray Conference
Series, 2021.

[2] Cherenkov Telescope Array Consortium, Introducing the CTA concept, Astroparticle Physics
43 (2013) 3.

[3] M.C. Maccarone, ASTRI for the Cherenkov Telescope Array, in 35th International Cosmic
Ray Conference (ICRC2017), vol. 301 of International Cosmic Ray Conference, p. 855, Jan.,
2017 [1709.03078].

[4] G. Pareschi, The astri sst-2m prototype and mini-array for the cherenkov telescope array
(cta), in Ground-based and Airborne Telescopes VI, vol. 9906, p. 99065T, International
Society for Optics and Photonics, 2016.

[5] A. Costa et al., Big Data Architectures for Logging and Monitoring Large Scale Telescope
Arrays, in Proc. ICALEPCS’19, no. 17 in International Conference on Accelerator and Large

https://doi.org/10.1016/j.astropartphys.2013.01.007
https://doi.org/10.1016/j.astropartphys.2013.01.007
https://arxiv.org/abs/1709.03078

LOUD system for ASTRI Mini Array Federico Incardona

[6]

[7]

[9]
[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

Experimental Physics Control Systems, pp. 268-271, JACoW Publishing, Geneva,
Switzerland, 08, 2020, DOI.

G. Chiozzi et al., The alma common software: a developer-friendly corba-based framework,
in Advanced Software, Control, and Communication Systems for Astronomy, vol. 5496,
pp. 205-218, International Society for Optics and Photonics, 2004.

“Opc ua online reference.”
https://reference.opcfoundation.org/v104/Core/docs/Part4/.

F.P. Miller, A.F. Vandome and J. McBrewster, Apache Maven, Alpha Press (2010).
“Apache avro.” http://avro.apache.org.

F. Pezoa, J.L. Reutter, F. Suarez, M. Ugarte and D. Vrgo¢, Foundations of json schema, in
Proceedings of the 25th International Conference on World Wide Web, pp. 263-273,
International World Wide Web Conferences Steering Committee, 2016.

N. Garg, Apache Kafka, Packt Publishing (2013).
“Elastic filebeat.” https://www.elastic.co/beats/filebeat.
“Elastic logstash.” https://www.elastic.co/logstash.

A. Lakshman and P. Malik, Cassandra: A decentralized structured storage system, SIGOPS
Oper. Syst. Rev. 44 (2010) 35-40.

“Apache cassandra.” https://cassandra.apache.org.

V. Abramova and J. Bernardino, Nosql databases: Mongodb vs cassandra, C3S2E ’13:
Proceedings of the International C* Conference on Computer Science and Software
Engineering (2013) .

D. Merkel, Docker: lightweight linux containers for consistent development and deployment,
Linux journal 2014 (2014) 2.

“Kubernetes.” https://kubernetes.io.

https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA032
https://reference.opcfoundation.org/v104/Core/docs/Part4/
http://avro.apache.org
https://www.elastic.co/beats/filebeat
https://www.elastic.co/logstash
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://cassandra.apache.org
https://kubernetes.io

	Introduction
	LOUD System Architecture
	Data model
	Logging data throughput

	System Deployment
	Log Simulator

	Conclusion and Future Perspectives

