Reconstructing inclined extensive air showers from radio measurements
T. Huege* and F. Schlüter
Pre-published on:
July 05, 2021
Published on:
March 18, 2022
Abstract
We present a reconstruction algorithm for extensive air showers with zenith angles between 65°and 85° measured with radio antennas in the 30-80 MHz band. Our algorithm is based on a signal model derived from CoREAS simulations which explicitly takes into account the asymmetries introduced by the superposition of charge-excess and geomagnetic radiation as well as by early-late effects. We exploit correlations among fit parameters to reduce the dimensionality and thus ensure stability of the fit procedure. Our approach reaches a reconstruction efficiency near 100% with an intrinsic resolution for the reconstruction of the electromagnetic energy of well below 5%. It can be employed in upcoming large-scale radio detection arrays using the 30-80 MHz band, in particular the AugerPrime Radio detector of the Pierre Auger Observatory, and can likely be adapted to experiments such as GRAND operating at higher frequencies.
DOI: https://doi.org/10.22323/1.395.0209
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.