
P
o
S
(
I
C
R
C
2
0
2
1
)
2
2
9

P
o
S
(
I
C
R
C
2
0
2
1
)
2
2
9

ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

ONLINE ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

37th International 
Cosmic Ray Conference

12–23 July 2021

Extraction of the Muon Signals Recorded with the Surface
Detector of the Pierre Auger Observatory Using Recurrent
Neural Networks

Juan Miguel Carceller𝑎,∗ on behalf of the Pierre Auger𝑏 Collaboration
(a complete list of authors can be found at the end of the proceedings)
𝑎University of Granada and C.A.F.P.E, Granada, Spain
𝑏Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina
E-mail: spokespersons@auger.org, auger_spokespersons@fnal.gov

We present a method based on the use of Recurrent Neural Networks to extract the muon component
from the time traces registered with water-Cherenkov detector (WCD) stations of the Surface
Detector of the Pierre Auger Observatory. The design of the WCDs does not allow to separate
the contribution of muons to the time traces obtained from the WCDs from those of photons,
electrons and positrons for all events. Separating the muon and electromagnetic components
is crucial for the determination of the nature of the primary cosmic rays and properties of the
hadronic interactions at ultra-high energies.
We trained a neural network to extract the muon and the electromagnetic components from the
WCD traces using a large set of simulated air showers, with around 450 000 simulated events.
For training and evaluating the performance of the neural network, simulated events with energies
between 1018.5 eV and 1020 eV and zenith angles below 60 degrees were used. We also study the
performance of this method on experimental data of the Pierre Auger Observatory and show that
our predicted muon lateral distributions agree with the parameterizations obtained by the AGASA
collaboration.

37th International Cosmic Ray Conference (ICRC 2021)
July 12th – 23rd, 2021
Online – Berlin, Germany

∗Presenter

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:spokespersons@auger.org
mailto:auger_spokespersons@fnal.gov
https://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
2
1
)
2
2
9

P
o
S
(
I
C
R
C
2
0
2
1
)
2
2
9

Extraction of the Muon Signals using Recurrent Neural Networks Juan Miguel Carceller

0 500 1000 1500 2000 2500
Time [ns]

Si
gn

al 
[V

EM
] Muon component

Total signal

0 500 1000 1500 2000 2500
Time [ns]

Si
gn

al 
[V

EM
] Electromagnetic component

0 500 1000 1500 2000 2500
Time [ns]

Si
gn

al 
[V

EM
] Muon component

Total signal

0 500 1000 1500 2000 2500
Time [ns]

Si
gn

al 
[V

EM
] Electromagnetic component

Figure 1: Signal in time measured by a single station of the SD for a simulated event. The total signal
corresponds to the signal measured by the SD and is the sum of the muon component (left) and the
electromagnetic component (right).

1. Introduction

Ultra-high-energy cosmic rays (UHECRs) are atomic nuclei with energies above 1018 eV. The
Pierre Auger Observatory was designed to unveil the origin of these particles. It is the largest cosmic-
ray detector built so far and comprises an area of 3000 km2. It is a hybrid detector featuring two
techniques: measuring the fluorescence light emitted by atmospheric nitrogen with the Fluorescence
Detector and measuring signals left by secondary particles of the shower that reach the ground with
the Surface Detector (SD). This work focuses on the data collected with the SD, which operates
with a duty cycle close to 100%. Particles traverse the 12 000 litres of ultra-pure water contained
in each station of the SD and the emitted Cherenkov photons are collected by three photomultiplier
tubes (PMTs). The resulting signal is proportional to the sum of the Cherenkov radiation in water
produced by electromagnetic particles (photons, electrons and positrons) and muons, see Figure 1.
Muons are highly penetrating particles, therefore they usually arrive at the stations at earlier times
than the electromagnetic particles. Furthermore, they produce a signal that is spiky, in contrast to
the signal from electromagnetic particles, which is more spread in time.

The determination of the muon component in the air shower is crucial to infer, for each event,
the mass of the primary particle, which is a key ingredient in the searches conducted to pinpoint the
sources of UHECRs. However, with the current design of the SD, the separation of the muon and
electromagnetic components can only be done for events with large zenith angles or for distances far
off from the shower core, see for example [1]. Hence, for most of the recorded data, this separation
cannot be done in a straightforward way. In this work, starting from the total time trace, we estimate
the muon signal for each WCD as a function of time using machine learning techniques.

2. The method

Our approach is based on Recurrent Neural Networks (RNNs). RNNs are specially well-suited
for time series due to their memory mechanism.

2.1 The input
The traces recorded by the water-Cherenkov detectors of the SD are the input to the neural

network. The electronics sample the signals in bins of 25 ns. The calibrated signals are expressed
in Vertical Equivalent Muons (VEMs), which correspond to the most-likely signal deposited by a
muon that vertically traverses the center of the detector. The traces used in this study are obtained
after averaging the traces of every functioning PMT in a WCD.
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Figure 2: Schematic drawing of the input, architecture and output of the neural network.

We use the first 200 bins (5 μs) of each trace. Traces that are shorter than 200 bins are
padded with zeros at the end. The choice is motivated because the most relevant information is
encapsulated in the first 200 bins of each trace. However, the trace information is not enough to
accurately determine the muon component of extensive air showers. The amount of atmosphere that
the particles traverse plays an important role, since the electromagnetic and muon components are
attenuated differently in the atmosphere. For this reason, we added two more input parameters: the
secant of the reconstructed zenith angle, sec 𝜃, and the distance to the core on the plane perpendicular
to the shower 𝑟 [2].

2.2 Recurrent Neural Network (RNN) architecture

The architecture of the neural network is shown in Figure 2. The input is a vector of 202
components: 𝑟 , sec 𝜃 and the 200 values of each trace 𝑆1, 𝑆2, . . . , 𝑆200, where 𝑆𝑖 is the value of the
signal measured at the time bin 𝑡𝑖 . A complete description of the architecture and the operations that
are performed can be found in ref. [3]. The model has a total of 87 212 trainable or free parameters.

2.3 Data selection and training

The neural network is trained with a library of simulated showers, with the same number
of showers initiated by protons, helium, oxygen and iron nuclei. The energy range covered by
simulations spans from 1018.5 eV to 1020.2 eV for zenith angles up to 60◦. Each shower is simulated
with CORSIKA [4] using EPOS-LHC [5] and then reconstructed using the Offline software of the
Pierre Auger Collaboration [6]. We select events that fulfill the quality condition that the station
measuring the highest signal has to be surrounded by six operating neighbours, thus avoiding events
that fall at the edges of the array.

Around 450 000 simulated events were available. The events were sampled randomly and
assigned to the training, validation or test data sets using a uniform distribution in energy and sec 𝜃
for the validation and test sets; the remaining events were assigned to the training set. A complete
description of the parameters, loss function and optimizer used for training can be found in ref. [3].
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Figure 3: Examples of predicted muon traces for two simulated events with EPOS-LHC, for a
electromagnetic-dominated signal (left) and muon-dominated signal (right). The prediction (black line)
agrees well with the shape of the simulated muon trace (orange line). The blue thicker line corresponds to
the signal measured by a WCD.
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Figure 4: Left: Distribution of the difference between the integral of the predicted muon signal 𝑆𝜇 and the
integral of the true muon signal 𝑆𝜇. Right: Distribution of 𝑆𝜇 and 𝑆𝜇 for all the stations in the test set.

3. Performance on simulations
We show examples of the predictions of the neural network in Figure 3. As a general comment,

we observe that, qualitatively, the prediction follows the shape and peaks of the total signal. The
network has learnt to reproduce the main features of the muon trace.

3.1 Integrals of the trace
One way to assess the performance of the method is to compute the integral of the predicted

muon trace, 𝑆𝜇 =
∑200

𝑖=1 𝑆
𝜇
𝑖 and compare it to the integral of the true muon trace 𝑆𝜇 =

∑200
𝑖=1 𝑆

𝜇
𝑖 .

The integral of the muon trace is is related to the total number of muons that reach the ground. In
the left panel of Figure 4, we show the difference between 𝑆𝜇 and 𝑆𝜇 for a particular bin of energy
and zenith angle for protons and iron nuclei. The difference is compatible with zero and does not
show a strong dependence with the value of the true muon signal. In the right panel of Figure 4, we
show the distribution of 𝑆𝜇 and 𝑆𝜇 for all the WCDs in the test set for showers initiated by a proton
primary. The two distributions have similar shapes.

In Figure 5, the performances of the method are shown as a function of the primary energy.
In the left panels, the mean value and standard deviation of the difference between the predicted

4
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Figure 5: Left: Mean value (top) and standard deviation (bottom) of the difference between the predicted
and values of the true muon signal as a function of energy. Right: Relative bias (top) and resolution (bottom)
for the determination of the muon fraction as a function of the energy.
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Figure 6: Integral of the predicted muon trace as a function of the integral of the true muon trace. The black
line corresponds to a perfect prediction and 𝜌 is the Pearson correlation coefficient.

and true values are shown for the different primaries. The mean values are close to zero and the
standard deviation is less than 2 VEMs in most bins. These performances readily translate into the
biases and resolutions for the muon fraction shown in the right panels. The biases are within 2%
for all the energies and angles explored here, regardless of the primaries. The resolutions are of the
order of 11% at 1018.5 eV, improving with increasing energies.

The performance of the method can also be evaluated as a function of the simulated muon
signal (𝑆𝜇). In Figure 6, we show the density plot of the predictions and the true values. The
predictions are highly correlated with a Pearson correlation coefficient that is 0.99 for all primaries.
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Figure 7: Mean and standard deviation of the difference between the risetime of the predicted muon signal
𝑡
𝜇
1/2 and the risetime of the true muon signal 𝑡𝜇1/2 for all the stations from events with the energies and zenith

angles specified in the boxes.

For vertical events, with 𝑆𝜇 > 5 VEM, the resolution in the determination of the muon signal
for each WCD is about 20% reducing to 10% for events with sec 𝜃 ' 2.0.

3.2 Hadronic interaction model
We have trained our neural network on events simulated with EPOS-LHC. We have also tested

the predictions of this neural network on simulations done with different hadronic models. For
simulations produced using QGSJetII-04 [7], the performance is similar to those presented with
EPOS-LHC. Similar results are also obtained when testing the predictions on simulations done
with Sibyll 2.3 [8]. With these results we show that the neural network predictions rely on the
response of the detectors to muons and are independent of the hadronic interaction model.

3.3 Risetime of the muon signal
The risetime 𝑡1/2 is defined as the difference between 𝑡10, the time corresponding to the first

time bin where the integral of the signal reaches 10% of its total value, and 𝑡50, the time where it
reaches 50%. The muon component has a smaller risetime than the electromagnetic component
since muons arrive earlier and in a shorter window of time.

In Figure 7, we compare the risetime of the predicted muon trace 𝑡
𝜇
1/2 with the risetime of the

simulated muon trace 𝑡
𝜇
1/2. The standard deviation is less than 100 ns (4 time bins) for most values

of the true risetime. This is small compared to the risetime of the total signal, which has a mean
of 500 ns for the left panel of Figure 7. While there is a larger bias at lower risetimes in the left
panel, vertical showers with such a short risetime (𝑡𝜇1/2 < 100) trigger less than 1.5% of the stations
included in that bin. The mean value approaches zero and the performance improves as the zenith
angle increases. This means that the network successfully predicts the shape of the muon trace.

4. Comparison to data
In this section we assess how the neural network performs when applied to experimental data.

The sample of events selected has the same cuts as the simulations used for training. In total, there
are 177 000 events registered from 2004 to 2017. In Figure 8, we show examples of the muon trace
predicted for two typical signals recorded with two independent WCDs.
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Figure 8: Examples of the predicted muon traces for two WCDs that belong to two different events recorded
by the SD.
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Figure 9: Left: Lateral distribution of the predicted muon and electromagnetic components for data. The
solid and dashed lines are the outcome of two independent fits (see text for details). Right: Measured risetime
of the total signal and risetime of the predicted muon signal as a function of the distance for two different
zenith angle ranges.

A straightforward way to verify the robustness of the muon signal measurement is to study
the behaviour of the total muon signal as a function of the distance to the air-shower axis, i.e. the
muon lateral distribution function (LDF). The muon LDF is illustrated in Figure 9, together with
the electromagnetic LDF. For each WCD, we can obtain the electromagnetic component simply by
subtracting the predicted muon signal from the total recorded signal.

In addition, we compare our data to the parameterizations of the LDF of muon and electromag-
netic particles that best fit the Akeno measurements. The authors of ref. [9] studied the properties
of muons above 1 GeV at different distances to the shower core for events with sec 𝜃 < 1.2. The
behaviour of the Akeno data is well reproduced by the function proposed by Greisen in ref. [10],
Eqs. (4) and (6) in ref. [9]. We fit our data with those expressions and the parameters that best
reproduce Akeno data, just leaving the overall normalization free. The outcome of the fit is shown
as a solid line in the left panel of Figure 9 for the energy range 1018.6 eV to 1018.7 eV. The level
of agreement between our measurements and the muon lateral distribution function extracted from
Akeno data is remarkable.

In ref. [11], the Akeno data are used to extract a parameterization of the density of the
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electromagnetic signal as a function of the distance to the shower core (Eq. (2.1) in ref. [11]). We use
that parameterization to fit our predicted electromagnetic signal, leaving the overall normalization
free as well as the parameter referred to as 𝜂 in the original publication. As for the case of muons,
the agreement with the Akeno parameterization of the electromagnetic signals is very good (dashed
line in Figure 9).

The data sample was also used to carry out a cross-check involving the arrival times of the
particles: we compared the risetimes for the total and predicted muon signals as function of the
distance to the core for two different zenith angle bins, see the right panel of Figure 9. As expected,
the muon risetime is consistently smaller since muons arrive earlier. As the zenith angle increases,
the fraction of the muon signal grows, thus the risetime of the total signal and the muon risetime
become more similar. This behaviour is correctly reproduced by the predictions of the RNN.

5. Summary
We have shown that a Recurrent Neural Network is a suitable tool to predict the muon content

of the time traces measured with each WCD of the SD of the Pierre Auger Observatory. The neural
network is trained on simulations, but the predictions are independent of the model used to simulate
hadronic interactions. The muon signal for each WCD can be measured with a resolution that
decreases from 20% to 10% as the zenith angle increases. Likewise, the muon fraction with respect
to the total signal is estimated with biases that are within a 2% and a resolution that is lower than
11%. The muon risetime can be predicted with a standard deviation usually lower than 100 ns,
which tells us that the shape of the signals is well predicted.

When applied to data, the behaviour of the extracted muon and electromagnetic signals agrees
well with relevant measurements found in the literature while other observables, such as the risetime,
follow the behaviour dictated by basic physics principles.
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