
P
o
S
(
I
C
R
C
2
0
2
1
)
2
4
5

ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

ONLINE ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

37th International 
Cosmic Ray Conference

12–23 July 2021

Study of longitudinal development of cosmic-ray induced
air showers with LHAASO-WFCTA

Hu Liu0,∗ on behalf of the LHAASO Collaboration
(a complete list of authors can be found at the end of the proceedings)
0Southwest Jiaotong University,
Xipu Campus, Southwest Jiaotong University, Chengdu, P. R. China, 611756
E-mail: huliu@swjtu.edu.cn

TheWide Field-of-view Cerenkov Telescope Array (WFCTA) is an important component of Large
High Altitude Air Shower Observatory (LHAASO), which aims to measure the individual energy
spectra of cosmic rays from ~30 TeV to a couple of EeV. The longitudinal development is one
of the main tools to distinguish nuclei from each other. WFCTA is composed of 18 imaging air
Cerenkov telescopes, each telescope has 32 × 32 pixels, covers a field of view 16> × 16> (each
pixel corresponding to 0.5> × 0.5>). The first telescope started in operation since February 2019,
up to now, there are 18 telescopes in operation. Cerenkov photon detected by different pixels
were generated at different height (or different traversed material). The distribution of dN/d\ (\
is the angle between the direction of Cerenkov photon and the direction of primary particle) is
reconstructed from the image of WFCTA to study the longitudinal development of the shower
(similar to dN/dX ). In this paper, the dN/d\ reconstructing method and the preliminary result on
the particle identification power based on this method will be shown.
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1. Introduction

The energy spectra of single element of Cosmic Rays (CRs) in the knee region is the key
to understand the physics of knee [1]. Currently the energy spectrum in this energy region are
only measured by the ground experiment. For ground experiment, the longitudinal development
of the shower (or dN/dX [2]) is one of the main tools to distinguish nuclei from each other.
LHAASO located in Haizishan Daocheng, Sichuan province of China, is a hybrid experiment
to detect cosmic rays. The height of LHAASO is 4410 m above sea level. One of the main
scientific goals is measuring the energy spectra of individual element from ~30 TeV to several
EeV. LHAASO has 18 Wide Field-of-view Cerenkov Telescopes, which are used to detect the
image of Cerenkov/fluorescent radiation of Extensive Air Shower (EAS) induced by cosmic rays.
LHAASO also has 78,000 <2 water Cerenkov detector (WCDA), and 1 :<2 Array (KM2A). Both
WCDA and KM2A will provide the core position and direction measurement. By combining the
image measurement from WFCTA and the core position and direction measurement from KM2A,
the number of Cerenkov photons in different \ bins (noted as dN/d\, \ is the angle between the
direction of Cerenkov photon and the direction of primary particle) is reconstructed both for data
and Monte Carlo (MC) samples to study the longitudinal development of the shower induced by
cosmic rays. The reconstructing method and preliminary result on particle identification will be
shown in this paper.

2. Experiment
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Figure 1: The layout of LHAASO experiment, WFCTA located at the center of KM2A array.

The layout of LHAASO is shown in Figure 1. WFCTA located at the center of the KM2A
array, close to the edges of WCDA. Both KM2A and WCDA will provide the core position with
a few meters resolution and the direction of the primary particle with resolution less than 0.5>

[3]. WFCTA detect the image of Cerenkov radiation from the EAS. Each Cerenkov telescope of
WFCTA consists of an array of 32×32 Silicon Photo Multipliers (SiPMs) and a ~5 <2 spherical
aluminised mirror. It has a field of view 16> × 16> with a pixel size of approximately 0.5> ×
0.5>. The telescope unit together with the power supply and a slow control system are installed
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in a 4.2 m × 2.5 m × 2.6 m shipping container. Different configurations of the telescopes in the
array will be used to optimise the sensitivity to the measurement of the cosmic ray energy spectrum
and composition in different energy ranges. In the first phase, there are six telescopes, the field of
view of the 6 telescopes are shown in Figure 2 (noted as T1,...,T6 below), there are overlapped area
between telescopes to reduce the leakage of the image. KM2A is composed of 5195 electromagnetic
detectors (ED) and 1188 muon detectors (MD). The direction of primary particle is reconstructed
by fitting the relative arriving time of ED hits, the core position is reconstructed by fitting the lateral
distribution of secondary charged particles detected by EDs. The event of WFCTA and KM2A are
matched together by selecting the difference of the trigger time within a few microsecond. The
analysis in this paper is based on the data collected by WFCTA and KM2A during the first phase.
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Figure 2: The field of view of 6 telescopes of WFCTA

3. Monte Carlo simulation

The simulations performed include the detailed air shower development in the atmosphere,
as well as the response of the detectors of KM2A and WFCTA. Air showers were simulated in a
wide energy range from 1013 to 1016 eV with CORSIKA (v76400) [4]. The QGSJETII models for
high-energy and FLUKA for low-energy hadronic interactions were used, and the EGS4 model was
used for electromagnetic interactions. Five components–protons, helium, CNO, MgAlSi, and iron
are generated in the above mentioned energy range, the mass number (noted as A below) for the
CNO and MgAlSi groups is 14 and 27, respectively. Showers following an �−1 energy spectrum
and an isotropic angular distribution are simulated with a zenith angle range of 20-40 degrees and
an azimuth range of 0-180 degrees, to match WFCTA field of view. The secondary particles and
Cerenkov photons reaching ground level are treated in a delicately developed detector simulation
program. The program for KM2A is developed in the framework of Geant4 package [5], The
program for WFCTA is developed based on ray tracing method. The shower core position is evenly
distributed in a square with the center of the WFCTA as the origin and a length of 600 meters.
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4. The Method

A typical image of EAS detected by one telescope of WFCTA is shown in the left panel of
Figure 3. The longitudinal development of the shower can be seen from the change of number
of Cerenkov photons along the long axis of the image, however, the image is also affected by the
viewing angle of the telescope. Every shower event has different direction, to study the longitudinal
development with the same view angle. A virtual image from a virtual telescope is reconstructed.
The direction of the virtual telescope is parallel with direction of the primary particle. The direction
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Figure 3: left: The image of Cerenkov photons detected by T1 of WFCTA; right: the image of the same
event calculated for the virtual telescope, which points to the direction of the primary particle.

of the virtual telescope is set to the reconstructed direction of the primary particle (defined as x-
axis), while the position of the telescope stays the same. The x-axis of the virtual telescope is
perpendicular to the z-axis, and points to the direction of the core position. The y-axis is the cross
product of z-axis and x-axis. For the signal of each SiPM from the real telescope, the direction
of those photons are calculated. Also the efficiency is used to calculate the number of photons
before entering the telescope, and then the detector simulation of the virtual telescope is performed
for those photons. Most of the efficiencies used in previous two steps are the same, the impact of
the inaccuracy of efficiency is cancelled out. After those procedures, the image from the virtual
telescope is obtained, which is shown in the right panel of Figure 3.

There are also some events detected by two telescopes, a typical event is shown in Figure 4.
In Figure 4(a), part of the event is detected by T1 (left) and T2 (right). After the same calculation
procedures with the event detected by one telescope, the image from the virtual telescope is shown
in Figure 4(b), the left one is the image from T1, the middle one is the image from T2, and the
right one is the combined image from T1 and T2. For the overlapped bins between T1 and T2, an
average value is used for the combined image.

The projection of the combined image of the virtual telescope to the x-axis is shown in Figure
5, the left one is the event detected by single telescope, and the right one is the event detected by
two telescopes. This distribution is defined as dN/3\, where \ is the angle between the direction
of Cerenkov photons and the direction of primary particle, N is the number of Cerenkov photons
in the \ bin. Normally the longitudinal development function is refereed to dN/dX, where X is the

4



P
o
S
(
I
C
R
C
2
0
2
1
)
2
4
5

Study of longitudinal development of cosmic-ray induced air showers with LHAASO-WFCTA Hu Liu

1

10

210

310

410

8− 6− 4− 2− 0 2 4 6 8
X [degree]

8−

6−

4−

2−

0

2

4

6

8

Y
 [d

eg
re

e]

1

10

210

310

8− 6− 4− 2− 0 2 4 6 8
X [degree]

8−

6−

4−

2−

0

2

4

6

8

Y
 [d

eg
re

e]

(a)

1

10

210

310

0 2 4 6 8 10 12
X [degree]

5−

4−

3−

2−

1−

0

1

2

3

4

5

Y
 [d

eg
re

e]

1

10

210

0 2 4 6 8 10 12
X [degree]

5−

4−

3−

2−

1−

0

1

2

3

4

5

Y
 [d

eg
re

e]

1

10

210

310

0 2 4 6 8 10 12
X [degree]

5−

4−

3−

2−

1−

0

1

2

3

4

5

Y
 [d

eg
re

e]

(b)

Figure 4: (a): The image of Cerenkov photons detected by T1 (left) and T2 (right) of WFCTA; (b): The
image of the same event calculated for the virtual telescope, which points to the direction of the primary
particle. Left: T1; middle: T2; right: T1 and T2 combined.

atmosphere mass traversed. In principle, the \ angle is correlated with X, because different \ angle
corresponding to different Cerenkov photon production height. However, based on MC simulation,
it can be seen that the relationship between \ and X is also affected by other variables, for example,
the mass of the primary particle. So in this paper, the new distribution of dN/3\ is used to study
the longitudinal development of the shower, instead of dN/dX.

From MC simulation, The small \ region of dN/3\ is well fitted with a Gaussian function,
while the large \ region of dN/3\ decreases slower than an exponential function, and is well fitted
with the function of 4−: \U . In this paper, the convolution of Gaussian function and this function is
reconstructed to fit the data of dN/3\. The formula of the function is equation 1, the fitting result
for the same two events is shown in Figure 5. The key parameter from 1 is the \ at which the
dN/3\ reaches maximum (noted as \<0G below), \<0G will be used to do the particle identification
between different nuclei.

5 (\) = #4−
(\−`)2

2f2 ⊗ 4−: \U

(1)
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Figure 5: The distribution of dN/d\ for two events of cosmic ray data, red line is the fitted function of
equation 1. Left: the event fully detected by single telescope; right: the event detected by two telescopes,
and the images are combined together.

5. Result

To study the particle identification power of \<0G , the same procedures are performed for the
MC samples. The distribution of dN/3\ from MC samples is similar to the one from the data, and
can also be well fitted with equation 1. From MC samples, \<0G is mostly affected by energy and
mass of the primary particle, however, it is also linear correlated with the Rp parameter, which is
the perpendicular distance from the telescope to the shower axis. After correcting for the Rp effect,
a preliminary result of the distribution of \<0G for proton and iron MC samples at around 1 PeV is
shown in Figure 6.
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Figure 6: Preliminary result on the distribution of \<0G for proton (red) and iron (blue) MC samples in the
energy range from 600 TeV to 1 PeV.
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