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1. Introduction

The geomagnetic effect and Askaryan effect contribute together to produce radio emission
during the development of air showers created by a neutrino, a charged particle or a gamma ray. The
radio emission can be received by antennas deployed above the ground, and the related techniques
of radio detection of air showers have developed rapidly in the last 2 decades [1].

Downward-going air showers induced by ultra high energy cosmic rays (UHECRs) have been
detected in several experiments. Different from the previous detection strategy, GRAND has
planned much larger antenna layouts which will increase its exposure to an unprecedented level [2],
and it will extend the radio detection to zenith angles larger than 90◦. The interactions between
an UHE g neutrino with the high-density material in the mountains create high energy g particles.
These have a relatively larger mass than ` and 4− and traverse a long distance in the rock and then
can exit into atmosphere to decay in the vicinity of the antennas. Previously, upward-going air
showers with a zenith angle above 90◦ have only been reported in the ANITA experiment [3]. Yet
it will be the dominant detection channel of neutrinos in GRAND, which is the main difference
from other experiments. For UHE primary particles coming from horizontal directions, the radio-
emission footprint initiated by air showers can reach up to 100 km2 on the ground [4], so horizontal
atmospheric showers are also expected. The predicted UHECR event rate will be 20 times larger
than that of the Pierre Auger Observatory when the GRAND array is fully deployed [2].

CoREAS is a Monte Carlo tool to simulate radio emission of extensive air showers using the
“endpoint formalism” to take into account emission created by acceleration of charged particles [5,
6]. It has been successfully applied in previous radio detection experiments such as KASCADE [7],
LOPES [8] and LOFAR [9], AERA [10] and others. CoREAS needs a model of the refractive index
of the atmosphere to properly describe Cherenkov effects. Thus an investigation of a representative
atmosphere for the GP300 site is done in this work (see section 2). CoREAS is implemented in
CORSIKA [11] to use the information of each tracked particle (position, time). But in the existing
versions of CORSIKA, there was no working option to simulate upward-going air showers. So the

Figure 1: Comparison of the atmospheric conditions for the radio sites from 2009 to 2019. Left: Comparison
of averaged atmospheric profiles of each month at the Lenghu site. Right: Comparison with other radio
detection sites.
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air shower library prepared in this work consists of only downward-going air showers until now.
Incorporating detailed information on the GP300 site such as the representative atmospheric model,
the geomagnetic field strength and the altitude, we have prepared a library of simulations for air
showers with different primary particles, primary energies, zenith and azimuth angles (see section
3). To simulate upward-going air showers, CORSIKA has been updated to enable simulations of
air showers with zenith angle \ > 90◦. We have used several testing methods to check the internal
consistency of this new update (see section 4). The radio detection of air showers works well in the
energy range down to several 10 PeV. The LHAASO experiment has reported recently a discovery
of gamma ray event at 1.4 PeV [12]. There is an energy gap between the two energy levels. To
bridge them, it is useful to study the possibility to detect gamma rays or cosmic rays in the energy
range down to 10 PeV in any phase of GRAND. A preliminary SNR analysis demonstrates that it is
quite difficult to achieve this goal in GP300 (see section 5).

2. Investigation of representative atmosphere for GP300 site

The depth of the maximum of the air shower evolution, X<0G , can be measured by radio
experiments and is an option to study the primary particle mass composition. The accuracy of the
radio-measured Xmax depends on the atmospheric condition since the interactions of cosmic rays
with atmospheric nuclei and decays of the secondary particles in the air govern the development
of air showers [1]. Until now, there was no detailed study of the atmospheric conditions such as
humidity, pressure, temperature, and the index of refraction at the GP300 site, which is a source of
systematic uncertainties in the reconstruction [13]. The Global Data Assimilation System (GDAS)
is a reliable global atmospheric model which has been applied in Auger and LOFAR [14, 15]. The
advantage of the GDAS model is that it provides time-dependent, realistic atmospheric profiles of
the location of the experiment.

In this work, the atmospheric data of the GP300 site in Lenghu (38°52’12.0"N, 92°19’48.0"E),
China from 2009 to 2019 is collected and analyzed with the GDAS tool implemented in CORSIKA.
For each month at the GP300 site, the moment of 12h00 and 0h00 of the 1st day and the 15th day
are analyzed with the gdastool to extract the atmospheric parameters, including refractive indices at
different altitudes. We compare all the months of each year, and certain days in each year, and then
average conditions of each year to select a representative model suitable for air-shower simulations
for GRAND.

As shown in Fig. 1 (left), the refractivity at 12h00 PM in the first day of each month from
2009 to 2019 is very similar. So the atmospheric conditions at this site are very stable and in that
sense ideal for radio detection. Refractivity decreases slowly from 0.0003 at sea level to below
0.00005 at 25,000 meters wrt sea level. The GP300 site is located at around 2900 m altitude, so the
refractive index at ground is ∼ 1.00022. In this work, the profile of 1st of June 2012 is chosen as
the representative model for all simulations.

A comparison with other radio detection sites such as AERA, IceCube, and Tunka is also made.
In addition, another potential GRAND site in Dunhuang near Lenghu is also analyzed. As shown
in Fig. 1 (right), the refractivity at the GP300 sites is relatively smaller than that of the other sites,
which is not expected. The comparison in the other months leads to the same conclusion.
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When there are no extreme weather conditions at the GP300 site, the GDAS profile should be
trusted. The simulations in this work are based on it.

3. Preparation of a CoREAS library

To demonstrate the viability of the detection principle of GRAND, the 1st phase GP300 will
contain 300 antennas and work in the energy range down to 1016.5 eV. Then the array will be
extended to 10 k and later to 200 k antennas in the next phases and the aimed energy will reach
beyond 1020 eV [2]. The library is designed to cover the energy range from [1016,1020] eV to serve
all the phases.

For UHECR, the thinning method needs to be introduced to reduce the computing time by
tracking only a fraction of particles. Especially when CoREAS is activated for radio emission
simulation, the computing time increases, in particular at large zenith angles. If the thinning level
is not small enough, obvious fluctuations in longitudinal distributions are obtained. If the thinning
level is too small, large computing resources are required. To balance the computing time and
precision, in this library, the thinning level is set as 10−6 with optimized maximum weights. The
computing time increases up to about 1000 hours for each UHE proton and iron air shower with
a zenith angle \ = 87◦. All the computations were done on the bwUniCluster 2.0 in Baden-
Württemberg. The PARALLEL option in CORSIKA is activated and the jobs are distributed on 5
nodes (64-bit Intel Xeon) with 20 tasks on each of them.

GRAND will be efficient to detect cosmic rays in the zenith-angle range above 65◦. For
downward-going air showers, CORSIKA 7.7400 is applied with the combination of QGSJetII-
04 and URQMD hadronic interaction models and CURVED atmosphere. Until now, simula-
tions of zenith angles from 65◦ to 87◦ have been finished. For upward-going air showers above
90◦, an updated version of CORSIKA7 has been developed and been tested, a detailed descrip-
tion of this adaptation is given in the next section. Showers at eight azimuth angles { −180◦,
−135◦,−90◦,−45◦,0◦,45◦,90◦, 135◦ } are simulated for each zenith angle. The representative atmo-
spheric model at the GP300 site is stored and selected in these simulations. The geomagnetic vector
in this work is {BG ,BI}={26.928,42.154} `T. A star-shaped layout with 240 antennas is configured
to receive radio signals. The corresponding response on each antenna generated with CoREAS is
stored and processed for further study.

4. Adaptation of CORSIKA7 for upward-going showers and its validation

Two upward-going, shower-like event have been reported by the balloon-based ANITA exper-
iment [3, 16]. But their nature is still unknown. More upward-going air showers are expected
to be detected in GRAND, which may help to find an explanation. The GRAND experiment is
expected to detect upward-going air showers generated by tau neutrinos interacting in the rock of
the mountainous site. Some simulation work of this kind of air showers has been made so far
with ZHAireS [2, 17]. Currently, CORSIKA 7 has been adapted to satisfy the requirements of
GRAND. To validate this adaption, testing methods are being developed. Downward-going air
showers simulated by CORSIKA have been studied and confirmed by several experiments. Hence
they can serve as references to check the simulated upward-going air showers. For the sake of
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Figure 2: Comparison of the longitudinal distribution of particle number and energy between upward-going
air showers (\ = 180◦) and downward-going air showers (\ = 0◦). Two proton air showers (left) and two
iron air shower (right) show their similar longitudinal distributions in upward-going and downward-going
directions. The particle numbers are shown on the upper panel, and the energy distributions are shown in the
bottom panels. Here the primary energy is 1016 eV and thinning level = 10−6.

simplicity, upward-going air showers of zenith angle \ = 180◦ and downward-going air showers of
zenith angle \ = 0◦ are compared in this work.

The following simulations of proton/Iron air showers were computed to make the comparison
in this work:

1. A 1016 eV upward-going proton (iron) air shower starting at an observation altitude of 1 m
with antennas located at an observation altitude of 15000 m (12000 m), the atmospheric depth of
which is illustrated with the dashed line on the left (right) side of Fig. 2.

2. A 1016 eV downward-going proton (iron) air shower starting at a random altitude above
8500 m with antennas located at an observation altitude of 1 m (800 m), illustrated with the solid
black line at the right edge on the left (right) side of Fig. 2.

For two identical particles originating from opposite directions in the same atmosphere, the
propagation of the decay-produced secondary particles could be compared to each other, although
the variations of atmospheric density are different. This is shown in the two top panels of Fig. 2,
where the particle numbers of 4+ and 4−, `+ and `− along the vertical depth for the two air showers
are very similar for both the proton and iron air showers. For the longitudinal energy deposit, the
4± ionization, `± and `± ionization, the W energy cut, `± energy cut, neutrinos, hadron ionization,
hadron energy cut, sum of all are compared, and four of them are shown in the bottom panels. These
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Figure 3: Distribution of the energy fluence in the 30-80 MHz band (left) and the 50-200 MHz band (right)
of a downward-going proton air shower with zenith angle \ = 0◦ with antennas at an altitude of 1 m a.s.l. (top
row) and an upward-going proton air shower with zenith angle \ = 180◦ at an antenna altitudes of 15,000 or
15,500 m a.s.l. (lower row).

similarities prove that the particles in the upward-going air showers behave in the same way as the
downward-going air showers. If the simulation works correctly, the radiation energy received by
the antennas should also agree. Several layers of star-shaped antenna grids were placed at different
observation altitudes for the upward-going air showers. The atmospheric depths corresponding to
these altitudes are shown with vertical line in Fig. 2 to illustrate that the antennas are located at a
roughly comparable stage of the air shower development for both the downgoing and upgoing air
showers. Two filters (frequency band 30-80MHz, and 50-200MHz) are applied in this work. This
comparison between upward-going and downward-going proton air showers should have similar
behaviors of energy deposit if the antenna layouts are placed at proper altitudes. As shown in Fig.
3 , the energy deposits are close but they are not exactly the same since they started in different air
densities. For the Iron air shower, the energy deposit leads to the same conclusions.

Another important check is the integral of the energy fluence over the respective radio-emission
footprints to determine the total radiation energy received by the antennas. The values are listed in
table 1 and show a reasonable agreement between the downgoing and upgoing showers as well as
the different altitudes for the antenna grids.

Judging from the particle profile and the agreement between the footprints and radiation
energies for the upgoing and downgoing air showers, we conclude that the modifications we made
to CORSIKA 7 to enable upward going geometries have been successful.
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Figure 4: Distribution of the energy fluence in the 30-80 MHz band (left) and the 50-200MHz band (right)
of a downward-going iron air shower with zenith angle \ = 0◦ with antennas at an altitude of 1 m a.s.l. (top
row) and an upward-going iron air shower with zenith angle \ = 180◦ at an antenna altitudes of 13,000 or
12,500 m a.s.l. (lower row).

30-80 MHz 50-200 MHz
Altitude �34? [eV] Altitude �34? [eV] Altitude �34? [eV] Altitude �34? [eV]
[m] proton [m] iron [m] proton [m] iron
1 1.176 · 103 800 7.970 · 102 1 2.238 · 103 800 1.449 · 103

15000 1.215 · 103 12000 7.834 · 102 15000 2.420 · 103 12000 1.513 · 103

15500 1.225 · 103 12500 7.859 · 102 15500 2.452 · 103 12500 1.526 · 103

16000 1.228 · 103 13000 7.846 · 102 16000 2.470 · 103 13000 1.537 · 103

Table 1: Radiation energy deposited at the radio antenna grids at different altitudes by proton and iron air
showers. Altitude = 1 (800) m corresponds to the downward-going air showers and altitudes from 15,000
(12,000) to 16,000 (13,000) m correspond to the upward-going air showers.

5. SNR estimation on the basis of CoREAS

We use the method to predict expected SNR values described in [18] to investigate detectability
of air showers for GRAND. A hexagonal layout with 301 antennas is used for this test. The radius
reaches up to 7000 m on the edge. The SNR analysis is first done for each antenna for cosmic rays
with primary energies from 1016 to 1017 eV. Here (#' = (2/#2 with ( the maximum of a Hilbert
envelope in the signal window and # the RMS noise in [50, 200] MHz.The other parameters are
the same as in the previous sections. As shown in Fig. 5, three different zenith angles (\ = 65◦,
74◦, 87◦ ) are investigated. The results show that it will be difficult to detect a signal at 1016 eV,

7
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Figure 5: SNR calculated for air showers detected in the 50-200 MHz band in the presence of Galactic
background. Showers were induced by protons for three zenith angles: \ = 65◦ (left), 74◦ (middle), 87◦

(right).

especially for larger zenith angles. However, with antennas near the Cherenkov ring, for example at
400 m axis distance for \ = 65◦, it seems possible to detect signals above the Galactic background.
If the primary energy is below 1016 eV, detection will be almost impossible.

6. Conclusions

In this work, atmospheric models were analyzed for the planned GP300 site with the GDAS
tool. We found that the site is located in a very stable atmosphere and that the refractive index is
on average lower than at other radio detection sites. Using this atmospheric model, a library of
down-going CoREAS-simulated air showers was created. Upward-going showers will be simulated
with an adapted version of CORSIKA 7. We have developed the corresponding code and tested it
both in terms of particle and radio simulation by comparing upward- and downward-going proton
and iron air showers. The results validate the functionality of this new version since the longitudinal
distribution of particle numbers and the predicted radiation energies agree for both geometries. An
SNR analysis shows that it will be very difficult to detect air showers below 1016 eV with the testing
layout of GP300, but it might be possible if the zenith angle is not too large.
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