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1. Introduction

All current and planned ultra-high energy cosmic ray (UHECR) experiments detect cosmic
rays indirectly by observing the extensive air showers (EAS) initiated by cosmic ray particles in the
atmosphere. The largest statistics of the ultra-high energy EAS events is recorded by the networks
of surface stations. The surface detector of the Telescope Array (TA) experiment [1, 2] is the largest
one in the northern hemisphere. It covers the area over 700 :<2 in Utah, USA, with over 500
ground scintillation stations, placed at a distance of 1.2 km from each other in rectangular grid.

In TA SD the full time-resolved signal is recorded in two layers of each SD station scintillator.
The standard SD event reconstruction [3] is built on fitting of the individual station readings with
the predefined empirical functions. The event geometry is reconstructed using the arrival times
of the shower front measured by the triggered stations. The shower front is approximated by the
empirical functions first proposed by J. Linsley and L. Scarsi [4], then modified by the AGASA
experiment [5] and fine-tuned to fit the TA data in a self-consistent manner. The integral signals
of the individual stations are used to estimate the particle density at distance of 800 meters from
the core (800 which plays a role of the lateral distribution profile normalization [6]. After the fit is
performed, the primary particle energy is estimated as a function

� = �(� ((800, \)

of the density (800 at the distance of 800 m from the shower core and the zenith angle \ using
the lookup table obtained with the Monte Carlo simulation [3]. In this work by means of machine
learning methods we develop reconstruction procedure which allows to use the raw time-resolved
signals directly. We show that the new approach lead to better event energy and arrival direction
reconstruction accuracy.

2. Method

We use the full Monte Carlo simulation of TA SD events induced by the protons and nuclei
described in details in Refs. [3, 7, 8]. We apply the standard energy spectrum and anisotropy
reconstruction quality cuts [9] to the simulated events in the same way they are applied to the data.
The full detector Monte Carlo simulation [3] of the TA observatory defines direct observables,
time-resolved signals for the set of the adjacent triggered detectors, as a function of initial parti-
cle momentum. We use multi-layer feed-forward convolutional neural network (NN) [10], a well
established machine learning algorithm to construct the inverse function. The choice of the convo-
lutional architecture is motivated by the approximate translational symmetry of the inverse function
with respect to detector grid location. The typical UHECR event triggers from 5 to 10 neighbour
stations. For the purpose of energy and arrival direction reconstruction we found it enough to use
the readouts from 4 × 4 grid of stations around the event core. Using 6 × 6 stations grid gives
little improvement while requires at least factor of two more computation resources. The optimal
neural network architecture is shown in Fig. 1. Each detector station records two time-resolved
signals, one per layer, with 20 ns time resolution. Although for the most of events the signal length
does not exceed 128 points we found it safe to use 256 points for the network input. The signal
at each detector station is first converted to the vector of 28 features by the convolutional neural

2



P
o
S
(
I
C
R
C
2
0
2
1
)
2
5
2

TA SD Energy and Arrival Direction Estimation Using Deep Learning O.E. Kalashev

Station Features

Normalize

Concatenate

WF encoder Waveform

Conv3D* 28 x (1,1,4)

x 6

Waveform encoder

4x4x256x28

Conv3D* 28 x (1,1,4)
4x4x256x28

MaxPool (1,1,2)
4x4x128x28…

Conv3D* 28 x (1,1,4)
4x4x4x28

Conv3D* 28 x (1,1,4)
4x4x4x28

MaxPool 28 x (1,1,4)
4x4x1x28

4x4x4x28

4x4x256x2

Waveform
4x4x256x2

4x4xS

Reshape (4,4,28)

4x4x28

4x4xK,   K=28+S

4x4xK

Conv2D* K x (3,3)

Conv2D* K x (3,3)

AveragePool (2,2)
2x2x2K

Concatenate

4x4xK

4x4xK

4x4x2K

Conv2D* 2K x (2,2)

Conv2D* 2K x (2,2)

AveragePool (2,2)
1x1x4K

Concatenate

2x2x2K

2x2x2K

2x2x4K

Flatten (4K)

Event Features

Concatenate
4K

N

BatchNormalize
N

Dense (64)
N+4K

Dense (3)
64

Output (X,Y,Z)

f0c12 configuration

* All Conv2D and Conv3D

layers have stride=1 and


‘same’ padding

Figure 1: Neural network architecture

network model which we call waveform encoder. The raw waveform data is converted to the log
scale before it is passed as an input to the encoder. Then extra detector features are added to the
extracted feature vector including integral signal and waveform delay with respect to plane front
obtained as a result of the standard event reconstruction as well as the detector station offset from
the rectangular grid. The grid of extracted features is then processed as multichannel image by
several convolutional layers followed by pooling until the image size is shrunk to 1G1. In order to
compensate the missing or disabled detectors, a special Normalize layer has been introduced, which
drops the pixels corresponding to the missing detectors and multiplies the activations of the present
detectors by a factor of #C>C0;/(#C>C0; − #<8BB8=6). Finally, the extracted event feature vector is
concatenated with the external event features obtained by standard reconstruction procedure, e.g.
(800 and a set of 14 composition sensitive synthetic observables [11]. The concatenated vector
is then processed by 2-layer perceptron which outputs either 3 numbers being interpreted as a
correction to the reconstructed coordinates of the arrival direction unit vector or just one number
which is treated as a correction to the reconstructed initial particle energy logarithm. In both cases
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we optimize the model weights by minimizing mean square error of the predicted quantity. The
input and output data are normalized to have roughly zero mean and unit variance.

The model shown in Fig. 1 has about 120 thousand adjustable weights, which we optimize
using the adaptive learning rate method Adadelta [12]. We split the data into training, test and
validation parts with proportions 8 : 1 : 1 and perform gradient decent steps using training set for
gradient calculation until the mean square error on the validation set reaches plateau which topically
takes no more than 100 of training epochs. We found it enough to use just early stopping as the
only regularization technique to avoid overfitting.

The NN model is implemented in Python using Keras [13] as a part of the Tensorflow library.
We also use Tune library [14] along with hyperopt package [15] to optimize model hyperparameters,
such as dimensionality of the waveform encoder output, the shapes of the convolution kernels and
the dense layer size.

3. Energy reconstruction

As the first example of the event’s NN-based event reconstruction enhancement we evaluate
the event’s energy � . In left Fig. 2 we compare the distributions of the energy reconstruction
errors for standard and NN-enhanced reconstruction procedures using test data set with energy
dependent event weights adjusted to fit HiRes experiment energy spectrum [16]. One can see
that both the bias and the width of the distribution are smaller for the CNN reconstruction than
the standard method. Note that the reconstruction procedures we discuss in this work are based
on the Monte Carlo event set built using QGSJETII-03 hadronic interaction model. To illustrate
the dependence of the primary particle energy reconstruction error on the interaction model we
have generated additional MC event set using QGSJETII-04 model and applied both standard and
NN-based reconstruction to the new event set. We see that error distribution, shown in right Fig. 2,
has both smaller bias and width for NN-enhanced reconstruction, although the absolute bias values
are now larger compared to QGSJETII-03 case, which is expected, since the whole procedure was
optimized with QGSJETII-03.
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Figure 2: Distribution of the difference between the reconstructed and true values of an event’s log energy
for the standard (yellow histogram) and CNN-enhanced (blue histogram) reconstructions of the protonMonte
Carlo event set simulated using QGSJETII-03 (left) or QGSJETII-04 (right) hadronic interaction model
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Figure 3: Standard deviation of the log energy reconstruction error calculated in four energy bins for the
standard (orange curves) and CNN-enhanced (blue curves) reconstructions of the proton Monte Carlo event
sets simulated using QGSJETII-03 (left plot) or QGSJETII-04 (right plots) hadronic interaction models.

In Fig. 3 we illustrate the energy dependence of the energy resolution. We show separately
resolution obtained for test Monte Carlo event sets simulated using QGSJETII-03 (left plot) and
QGSJETII-04 (right plots) hadronic interactionmodels. We see that for both cases the reconstruction
accuracy grows with energy, with NN-based methods being more accurate in all energy bins.
Namely, we get roughly 20% improvement in terms of log energy resolution which we get using
NN-based reconstruction compared to standard one. We should remind, however, that changing
hadronic interaction model also introduces some bias, which was not shown in the figure.

4. Arrival Direction Reconstruction

The NN-based reconstruction procedure outputs 3 components of unit vector pointing to the
primary particle arrival direction. In Fig. 4 we convert it to zenith angle and evaluate the distribution
of the zenith angle estimation errors for standard and NN-based reconstruction methods. We
conclude that both the bias and the width of the distribution are smaller for the CNN reconstruction
than the standard method.

In Fig. 5 we show distribution of angular distance between true and predicted direction obtained
in standard and NN-based reconstructions for proton Monte-Carlo event set with event energies
larger than 10 EeV and 57 EeV. We also calculate the angular resolution as 68% percentile of
angular distance between true and reconstructed cosmic ray arrival direction.

Also as in previous section we estimate systematic uncertainty due to the choice of a particular
hadronic interaction model by applying CNN reconstruction trained using QGSJETII-03 model to
the test data set generated using QGSJETII-04model. We plot angular resolutions for the proton and
iron Monte Carlo event sets as a function of the reconstructed energy using either QGSJETII-03 or
QGSJETII-04 hadronic interaction model for test data in Fig. 6. In both cases the training data was
composed of Monte Carlo events initialized by H, He, N and Fe nuclei mixture in equal proportions
calculated with QGSJETII-03 hadronic interaction model.

The angular resolution at a given energy is better on average for heavier nuclei since the EAS
produced by heavy nuclei are typically wider and trigger more detectors. This seems to be the

5



P
o
S
(
I
C
R
C
2
0
2
1
)
2
5
2

TA SD Energy and Arrival Direction Estimation Using Deep Learning O.E. Kalashev

3 2 1 0 1 2 3
,

0

2000

4000

6000

8000

10000
Erec > 10 EeV

( ) = 0.85
= 0.017

( ) = 1.08
= 0.054

NN
Std.

3 2 1 0 1 2 3
,

0

50

100

150

200

250
Erec > 57 EeV

( ) = 0.59
= 0.0002

( ) = 0.80
= 0.038

NN
Std.

Figure 4: Distribution of the difference between the reconstructed and true values of an event’s zenith angle
for the standard (red histogram) and CNN-enhanced (blue histogram) reconstructions of the proton Monte
Carlo event set simulated using QGSJETII-03 hadronic model for the reconstructed energy higher than 10
EeV (left figure) or 57 EeV (right figure).
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Figure 5: Angular distance l distribution between the true and reconstructed arrival directions for the
standard (red histogram) and CNN-enhanced (blue histogram) reconstructions of the proton Monte Carlo
event set simulated using QGSJETII-03 hadronic model for the reconstructed energy higher than 10 EeV (left
figure) or 57 EeV (right figure). Vertical lines denote the positions of 68% percentile of the distributions, i.e.
the angular resolution values.

main reason of the resolution difference as it is clear from the Fig. 7 where the dependence of the
resolution on the number of detectors triggered is shown for protons and iron nuclei.

5. Conclusions

We have shown that the deep learning based methods allow to substantially enhance the
accuracy of the TA SD event energy and geometry reconstruction. The log energy resolution for
proton showers was improved by about 20%, however this improvement has little effect on the
possible systematic bias due to uncertainty in the hadronic interaction model.

The angular resolution for proton induced showers is improved from 1.35◦ to 1.07◦ at the
primary energy of 1 EeV, from 1.28◦ to 1.00◦ at the primary energy of 10 EeV and from 0.99◦ to
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Figure 6: Angular resolution for the standard (red curves) and CNN-enhanced (blue curves) reconstructions
of the proton (solid lines) and iron (dashed lines) Monte Carlo event sets simulated using QGSJETII-03 (left
plot) or QGSJETII-04 (right plots) hadronic interaction models.
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Figure 7: Angular resolution dependence on the number of detector stations triggered for the proton and
iron Monte Carlo sets simulated using QGSJETII-03 (left plot) or QGSJETII-04 (right plot).

0.75◦ at the primary energy of 57 EeV. The result is especially important for the point source search,
since background flux is proportional to the square of the angular resolution.

The systematic uncertainties related to the choice of hadronic interaction model which cause
limited applicability of the new method for the primary particle energy determination seem to be
almost irrelevant for the arrival direction reconstruction.
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