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Adaptive filtering belongs to the realm of learning algorithms, widely used in our daily life in the
context of machine learning, artificial intelligence, pattern recognition, etc. [1]. It is formally
defined as a self-designing device with time-varying parameters that are adjusted recursively in
accordance with the input data [2].
The trigger mechanism is a central task in experiments using antennas to detect cosmic rays as it
selects a cosmic- ray induced signal among all the voltages traces events that reach the antennas.
This work presents the efficiency of a trigger mechanism developed using the adaptive predictor
filter technique, whose capability is well known for time series prediction usage. This technique is
independent of an external detector, using only the online temporal field recorded by the antennas
in a simulated data set and Gaussian noise.
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1. Introduction

Radio-detection of a cosmic ray is a modern, well established, and low-cost technique that
uses antennas to detect the electromagnetic component of the air shower [4]. Nowadays, several
experiments are running worldwide and new experiments are planned. In both cases, the community
expects improvements on the accuracy of the primary particle energy, composition, and arrival
direction. Themain challenge for this type of detection is the background present at the experimental
site due to human-made radio noise, and the Galactic Gaussian noise [7]. The former can be
drastically reduced if site is chosen in deserted and remote areas, as proposed by the GRAND
experiment [6], while the second one is irreducible.

Using thresholding methods on the signal read by the antennas, a self-triggered mechanism
leads to a high number of false-positive or false-negative events. This scenario pushed radio
experiments to develop a hybrid trigger mechanism: the timestamp of the signal is detected in
coincidence with particle and/or fluorescence detectors indicating when an event happened in
temporal series. Then, one may search for this timestamp in the radio signal given by the antennas.
Ideally, the trigger would have to work independently of another detector, especially in large-
scale experiments, i.e., a higher number of available antennas covering a large area at which an
external detector for each antenna is not available. Thus, the presence of a sophisticated self-trigger
mechanism becomes necessary to improve detection efficiency.

An adaptive filter is an online learning algorithm, that among several applications, can be
used for denoising, system recognition, and time series prediction. The latter one we use to test its
efficiency as a self-triggermechanism. The simulated data used in this analysis were generated using
the COREAS [5] radio emission simulation tool from CORSIKA [3] software with a background
composed of a Gaussian distribution of zero mean and a variable width.

2. The simulated dataset

The electric field was generated using the CORSIKA software using the CoREAS radio tool
package. This simulation was performed in the GRAND experiment scenario, i.e., using the site’s
magnetic field and the experiment’s antenna configuration. No impulsive noise is added to the
background. We consider only the Galactic background described by a Gaussian spectrum. At the
GRAND site, for example, the background is mainly of galactic origin: a Gaussian distribution
with roughly 15 `V standard deviation [6].

The antenna response is specific to each type of antenna, considering its frequency band and
geometry. The output read by the electronics will be a voltage value. Given the electric field traces
provided by COREAS, we also simulated the GRAND collaboration’ antenna response. We added
the noise to the signal in order to mimic the realistic scenario, i.e., the voltage trace plus the Gaussian
distribution. The dataset consists of a single voltage trace template with 5000 Gaussian background
samples of different widths. These ranged from 1`V to 50`V in 1`V steps, and for each width, 100
distributions were generated. The result for this simulation procedure was performed and shown in
figure 1. This procedure is an attempt to span all possible signal-to-noise ratio scenarios of signals.
The SNR in dB scale is defined as

SNR = 20 log
(RMSsignal

RMSnoise

)
. (1)
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Figure 1: Starting with a standard radio signal template for each polarization, the Gaussian noise sample
was ranged from 1`V to 50`V standard deviation, which gives a range from 5dB to -30dB. In the first plot, a
good SNR, then the real SNR for GRAND site, and a very poor SNR. For each standard deviation, a hundred
background samples were generated.

Figure 2: The FIFO (First In First Out) memory buffer design.

Both RMSsignal and RMSnoise were calculated considering the size of the trace, i.e., N equals to
2082 samples.

3. Adaptive filters

The signal read by the antennas can be defined as s = (B1, . . . , B8 , . . . ) ∈ RN, where B8 = 0
for all 8 ∈ N, except for a finite number of indexes. The adaptive filter does not read the entire
signal s at once. The input x(:) is a finite buffer of length " obtained from s and defined as
x(:) = (B: , B:−1, . . . , B:−8 , . . . , B:−("−1) ), for : = 0, 1, 2, . . . , where B 9 = 0 if 9 < 1 (see fig. 2).
Given an input signal x(:), the output signal H: is defined as the inner product of a coefficients
weight vector w(:) with the input-data vector,

H: = w(:)) · x(:). (2)

The goal is to minimize a function of the error between an ideal desired signal 3: and its output
signal H: , i.e., the error squared

4: = (3: − H:)2, (3)

with a constant adjustment of the coefficients weight vector, based on the cost function minimization
algorithm [1]

w(: + 1) = w(:) + `x(:)4: . (4)
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Figure 3: Full chain of the self-trigger mechanism of the radio signal induced by a cosmic ray, considering
real data and the predictor adaptive filter schematic. The � parameter is the time delay in the signal. Adapted
from [1].

The adaptive predictor filter uses a delayed version of the signal itself, defined as 3: = B:−� as
the desired signal. The input parameter D is a fixed constant chosen to not overlap the input signal
and the desired signal, i.e, it is larger than a typical time window of a radio signal. The ` is also
an input parameter set dependent on the input signal power, which controls the amount of variation
that the weight vector will increase, and : is the loop control variable that will run over the signal s
read by the antennas [1].

The behavior of theweight vector can be used as a triggermechanism because it will vary during
a possible transient since the weight vector will vary as it tries to minimize the error. Minimizing
the error means attempting to copy the desired signal with the linear combination of the input signal
x(:) and the vector of weights w(:). In the transient regime, 3: is expected to be a higher value,
and x(:) is expected to be a fluctuation of the background. Therefore, the weight vector will have
to change in order to copy the desired signal abruptly. The main advantage of this method is that
the behavior of the weight vector spectrum can be more sensitive than the signal power spectrum
itself [8].

Note that this mathematical basis is similar to the one used in neural networks, with the main
difference of the non-linear component related to the behavior of the neuron. Adaptive filters are
usually easily implemented, have a fast computational response, do not need a massive amount of
data to be trained, and have similar functionality. The input data is processed in real-time if the
data is recorded using an FPGA board. In this sense, an adaptive filter can be implemented online,
directly programmed inside the FPGA, and when a radio signal induced by a cosmic ray arrives, it
can be triggered almost instantaneously.
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4. Analysis

Since the w(:) = (F1, . . . , F8 , . . . , F" ) vector shows variational behavior during a transient,
we used its local average as an estimator defined as

ΔF: =

"∑
8=1

F8/". (5)

The global average is defined as

`, =

:<0G∑
:=1

ΔF:/#, (6)

and the global width is defined as

f, =

:<0G∑
:=1
(ΔF: − `)2/#, (7)

As a generic cut, if the local average is larger than 2f, :ΔF: > 2f, , we consider it as a positive
candidate. As the GRAND antenna model has three polarizations, we require a positive candidate
in each polarization for an induced radio signal positive detection, although it is a strictly cut. In
this sense, using more simulated data, we estimate its efficiency and false positive rate. Efficiency
is defined as

eff = =?/=sim, (8)

where =? is the number of positive detection and =sim=5000, which is the number of simulated
events. The false-positive rate is defined as

FPR = =′?/=′sim, (9)

where =′? is the number of positive detection in case the simulated data set does not include any trace
inside, i.e., only composed of Gaussian noise over the three polarizations and =′sim=100 for each
SNR. In other words, the FPR indicates the number of times, in a completely random distribution
set, the trigger was activated although there was not a signal present.

5. Results

The data set used in this analysis is composed of 5000 traces and a single template. We have
chosen a single template since in principle, this analysis is template-independent. The efficiencywas
estimated using the three antenna polarizations (G,H,I), and the detection is given by the combined
detection in all three of them. It is assumed that the signal in each polarization should have its
peak temporally near to each other. Thus, if three peaks are found in the sample (one for each
polarization) and if they are temporally close to each other (in the same time window), then the
trigger is activated, i.e., a positive detection occurs. It is important to mention that a signal is not
necessary available in all polarizations; e.g. when a shower arrives from the west, the signal will
only be north-south (vertical) [4]. This means this method is valid for a subset of arrival directions
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Figure 4: The False Positive Rate (FPR) using the predictor adaptive filter in a complete random distribution
data. It is possible to note the very low rate ≈ 6% of most probable value.

Figure 5: For highly corrupted signal (very low SNR) the efficiency is very low almost compatible with
false positive rate. As the SNR increases, also the efficiency increases, and beyond -15dB we expect more
that 90% of trigger efficiency.

not quantified in this analysis. Further investigations must be performed concerning the estimation
of these limits.

To estimate the amount of the FPR the same analysis was used, however the datset was only
composed of random Gaussian traces also ranging from 1`V (5dB) to 50`V (-30dB). The FPR
distribution is shown in the histogram in figure 4. The detection efficiency of the predictor adaptive
filter as a trigger mechanism is presented in figure 5. We can assume that above -15 dB, the
efficiency is almost 90%, with a very low and constant FPR.

The FPR was estimated using traces of size N (sample), where N equals to 2082. It may be
also expressed in counts per second if we know the sampling rate of the experiment. The sampling
rate of the GRAND experiment is 500 MHz [6], which gives a FPR ≈ 15 kHz.
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6. Conclusion

The adaptive predictor filter has shown to be a potential and innovative tool for a self-
independent trigger mechanism applied in air shower radio signal detection. Using this tool on
measured massive data we expect to validate it in a real scenario, also considering different types
of background and templates.
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