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The nitrogen laser calibration system for the Wide Field of View Cherenkov Telescope Array
(WFCTA) is one of the most important components of the Large High Altitude Air Shower
Observatory (LHAASO). This calibration system is composed of three parts, including a high-
precision 3D lifting and rotating platform (HiRoP), a nitrogen laser and the wide field of view
Cherenkov telescope prototypes. The accuracy of the HiRoP is of great importance for the precise
calibration of WFCTA since it controls the laser beam’s pointing direction. A home-made HiRoP
was introduced and the measurements implies that the angular and lifting accuracies of HiRoP
are better than 0.003° and 0.075 mm, respectively. Furthermore, the pulse energy stability of
the nitrogen laser beam is another remarkably important factor. The nitrogen laser system with
a wavelength of 337.1 nm located in a high-precision temperature and humidity’s controlling
container, resulting in a pulse energy fluctuation less than 3 percent. Besides, the method of
a standard zero point verification is employed to improve the long-term accuracy of the beam
pointing direction.
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1. Introduction

As one of the major national science and technology infrastructures, Large High Altitude Air
Shower Observatory (LHAASO) is designed to study cosmic rays and gamma rays[1]. The Wide
Field-of-view Cherenkov Telescope Array (WFCTA) is one of three detector arrays of LHAASO.
WFCTA is an array of Cherenkov fluorescence telescopes, where a movable design idea is adopted.
The different array configurations are used for Cherenkov observational mode and fluorescence
observational mode to realize the different scientific objects[2]. It aims to measure the spectrum of
cosmic rays from 10 TeV to 1 EeV by calculating the number of photons detected. Therefore, the
absolute calibration of the number of photons received by WFCTA is the key to obtain the accurate
energy of the original cosmic rays.

The nitrogen laser calibration system iswidely used in the detectorswithCherenkov/fluorescence
observational mode. In the calibration process of LHAASO-WFCTA, the accurate pointing of the
laser beam in the all sky is accomplished by the rotating of HiRoP. Therefore, the accuracy of
each parameter of HiRoP is critical for that. Pierre Auger Observatory’s fluorescence telescope
detector array also uses a similar laser calibration system which is capable of providing both a
steered beam and a fixed-direction vertical beam. The absolute accuracy of pointing is less than
0.2°, and the relative accuracy is maintained within 1/80°[3–6, 11]. The absolute direction of the
High Resolution Fly’s Eyes (HiRes)[7, 10] can point to any azimuth or zenith angle within 0.1°,
Relative direction of the mirrors is less than 0.005° in any azimuth and 0.03° in any azimuth[8].

In this presentation, the angular and the lifting repeatabilities of HiRoP are better than 0.003°
and 0.075 mm, respectively. And the method of standard zero point is employed to assure the
long-time accuracy of the beam pointing direction. The application of thermotank is introduced to
improve the energy stability of emitted laser beam to less than 3%.

2. The components of the nitrogen laser calibration system

As shown in Figure 1, the nitrogen laser calibration system consists of several components,
mainly including HiRoP, the nitrogen laser, the standard zero point, temperature controlling system,
timing system, and the programmable logic controller (PLC). The HiRoP, whose precision directly
decides the pointing accuracy of the laser,provides the rotation, pitch and elevation of the laser
system. The nitrogen laser system, emitting the pulse of 337.1 nm to calibrate WFCTA, is located
on the HiRoP. The standard zero calibration function enables an effective observation of HiRoP’s
positional accuracy and implements a remote calibration in the case of a misalignment. The
temperature controlling system contains several sensors to monitor the temperature and humidity of
the environment. And one energy meter is installed to record the laser energy. The timing system,
GPS, provides a daily time calibration function for the computer and a pulse trigger signal for the
nitrogen laser. PLC, the control system, can not only ensure that HiRoP performance all-day cruise
missions stable, but also support more than 20 solutions that can be switched freely.

3. The standard zero point

The direction of laser is important because of its relationship with the WFCTA’s calibration.
After the setup of the nitrogen laser calibration system, we employ the Shadow-Tip Method to find
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Figure 1: The schematic of the nitrogen laser calibration system

the north direction, and the horizontal direction with gradienter, which are defined as standard zero
point. However, long time running may induce some errors of the direction. As shown in Figure 2,
special equipment is set up to monitor the standard zero point. The laser is fixed on the top of HiRoP,
which produce spots on the coordinate paper fixed on the wall. The distance between the laser
and the coordinate paper ! is far enough to increase measuring accuracy. The spot is continuously
imaged through a CCD camera at a distance of 3. In order to reduce the influence of background
light, dark environment is required when measuring. Meanwhile, to avoid over exposure of the
image, a 0.01% filter is placed in front of the CCD camera. The image of the unexposed light spot
is projected horizontally or vertically to obtain the distribution curve of the intensity value in a
certain direction. The position coordinates of the spot can be obtained by Mass Center method or
the curve fitting with Gaussian function. Each pixel of the CCD camera corresponds to the actual
calibration value W by covering the coordinate paper with the field of view of CCD. Therefore,
the exact position of the laser spot on the coordinate paper can be obtained. If the spot changes
from O point to A point, the trigonometric function relationship can convert the change of the spot
displacement (X pixels) to the angle change of rotation, which can be expressed by \ ≈ ΔG/!. The
accuracy can reach 0.001◦ by averaged 60 pulse spots when employing nitrogen laser as source
light. And if we want to measure the performance of HiRoP, the helium-neon gas laser is more
convenient because of its continuous laser. And the accuracy of 0.0009◦ can be obtained (Figure
2(b)(c)).

After 33 days normal running of the laser calibration, the data implies that our system is quite
stable, as shown in Figure 3. In the most days, the errors are less than 0.01◦, which is the resolution
of 0.01 degree monitored by PLC. So Those days can be considered as normal ones. If not, further
action is taken to regulate the standard zero point.

3



P
o
S
(
I
C
R
C
2
0
2
1
)
2
6
9

The nitrogen laser calibration system Long Chen

Figure 2: The principle of digital image processing method. (a) Schematic diagram of experimental system
construction; (b) The image of the light spot and the projected intensity distribution of the spot on the
horizontal axis (blue) and Gaussian fitting curve (red), G axis represents the position of the laser beam
projected in the horizontal direction, and H means the intensity of the laser beam corresponding to the G; (c)
The distribution of laser beam position projected in the horizontal direction.

4. The performace of HiRoP

As the source, the helium-neon gas laser can offer continuous and stable gaussian beams ,
which meets the requirement of measuring the precision of HiRoP. The schematic diagram of
measurement principle of HiRoP is the same as the method of standard zero point in Figure 2.The
PLC controls the rotation of HiRoP, which is set to a specific angle, named Δ\. The laser beam
will reach a new position, and the difference between the two positions is the actual rotation angle
Δq of the HiRoP obtained from the method.The HiRoP rotates forward with a certain step, which
then stop and run in the opposite direction without doing any operation. As shown in Figure 4, the
spot position is linearly fitted. Where %0 is the y-intercept of the fitting straight line, and %1 is the
fitted slope value.The closer to 1 the slope value approaches, the better the consistency between the
setting value of PLC and the real rotation value measured by the method. The blue dots are the
fitting results of the forward data, and the red dots are the fitting results of the reverse data. The
difference between the y-intercept values of the two fitting straight lines is rotational error. The
back lash of the azimuth direction is 0.004◦ degrees in Figure 4(a). The back lash of pitch direction
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Figure 3: The standard zero position monitoring in horizontal direction and pitch direction with 33 days

is 0.087◦ in Figure 4(b). The back lash of lifting direction is better than 0.2 mm in steps of 2 mm,
as shown in Figure 4(c). The slopes of the three fitting straight lines are 0.99, 0.99, 0.98, respectively.

Figure 4: The back lash of the no-load 3D rotating and lifting platform. (a) Horizontal direction; (b) Pitch
direction; (c) Lifting direction.

Repeatability refers to the standard deviation value of repeatedly reaching the same position.
The 0 position is set to repeat the position multiple times, with the HiRoP rotating 20◦ or moving
40 mm in one dimension , and the statistical distribution of the 0 position is shown in Figure 5. The
repeatability of horizontal direction is maintained within 0.003◦ in Figure 5(a). The repeatability
of pitch direction is less than 0.003◦ in Figure 5(b). The repeatability of lifting direction is within
0.058 mm in Figure 5(c).

5. The performance of the nitrogen laser

NL100 nitrogen molecular laser is used in the calibration system as laser source. The wave-
length of the laser is 337.1 nm, and the pulse width is 3.5 ns. During the experiment, its operating
frequency is 1 Hz, which is triggered by the GPS. The laser provides closed to 170 ` J each pulse.
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Figure 5: Repeatability and positional accuracy of non-load HiRoP. (a) Horizontal direction; (b) Pitch
direction; (c) Lifting direction.

The environment, where the laser works, is harsh that the temperature often changes from 10 de-
gree to -20 degree during one night. That’s because the LHAASO site locates at Haizi Mountain,
Daocheng County, Sichuan Province, which is the edge of Tibetan Plateau with an altitude up to
4410 m. Although comparing other lasers, the nitrogen laser is sturdy, its energy would decrease
as the temperature is too low. Special protections are employed to guarantee its normal working.
As shown in Figure 6, thermotank is designed to keep the laser stay in the stable environment with
a constant temperature. The thermotank can not only control the temperature, but also prevent the
dust or the rain outside.

Figure 6: The nitrogen laser and thermotank. (a)the design of thermotank; (b)the diagram of the laser and
thermotank.

The energy of the nitrogen laser is directly related to the accuracy ofWFCTA calibration. When
the laser stores in the thermotank, its energy stays more stable as shown in Figure 7. Removing the
first hundreds of second data, the energy stability is about 3% over 11 hours. During our observation
time, the energy of the laser is recorded at the beginning after warming up and at the end of the
observation for half an hour. The average energy of the two period predicts the laser energy during
the none-measure time.

6. Discussion

The calibration system is a complicated system. In this paper, some dominant components of
the nitrogen laser calibration system are studied. The high precision of HiRoP is the fundamental
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Figure 7: The energy of the nitrogen laser.Top panel: the blue line-dots is the nitrogen energy pulse by pulse,
the red line-dots is the average value of one minutes, the green line-dots is the temperature in the thermotank.
Bottom panel: the statistical profile of the energy data.

of the pointing accuracy of the laser. The application of the standard zero point assures the long
time running. Special protection of the laser provides the energy stability of the laser.
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