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1. Introduction

Despite the experimental progress in detection of ultra-high energy cosmic rays (UHECR) and
growing quality and quantity of data, our understanding of this phenomenon is hampered by three
coupled unsolved problems: UHECR sources, nature of UHECR particles and cosmic magnetic
fields.

While the arrival directions of UHECR are reconstructed with the precision of 1− 1.5◦ and no
systematic errors, the directions to the UHECR sources cannot be determined with any precision
because of deflection in cosmic magnetic fields by potentially much larger angles. These deflections
are uncertain because of both the unknown particle charge and uncertainties in the magnetic fields.
The determination of the primary particles charge is prone to uncertainties of hadronic interaction
models. The existing measurements [1–4] have large errors and may contain unknown systematic
effects. Cosmic magnetic fields are also not known sufficiently well. Experimentally, only loose
bounds exist on the extragalactic fields [5, 6]. A rough magnitude of the coherent Galactic magnetic
field (GMF) is known to be several `� [7]. However, its general structure is unknown. Several
proposed phenomenological models [8, 9] should be considered as examples of what the field might
be, at best.

Our approach is to reduce three uncertainties — sources, composition and magnetic fields by
additional assumptions. A most robust assumption can be made about the source distribution in
space: in all existing models they follow the matter distribution. If one assumes in addition that the
sources are sufficiently numerous to be treated on statistical basis, the uncertainty related to sources
is essentially eliminated. We will refer to this source distribution as Large-scale Structure (LSS)
source model.

To disentangle the uncertainties of magnetic field from that of mass composition it is instructive
to note that the former is estimated to be a factor ∼ 2 in terms of average deflections, if the EGMF
is not extremely strong or coherent (see Ref. [10] for detailed discussion). While the uncertainty
due to composition would be as large as factor 26 if we try to distinguish protons from iron nuclei.
This simple relation gives the opportunity to study and constrain mass composition as the most
uncertain parameter of the UHECR flux. The study is made by comparing observed distribution of
UHECR in the sky with those simulated for different UHECR compositions.

The comparison is made using a single characteristic parameter — an average deflection from
the LSS parameterized as a width of the Gaussian spread of a point source, average over UHECR
events is a set. While the contribution of complicated coherent galactic magnetic field to deflections
is likely large, we have shown that this observable is mostly insensitive to GMF details but still
sensitive to the overall magnitude of deflections [10]. At the same time this observable have a
discriminating power with respect to different compositions of UHECR in an event set.

In the present note we apply the developed method to the recent TA SD data and derive the
constraints on the composition of UHECR with � > 10 EeV.

2. The experiment and the datasets

Telescope Array [11, 12] is the largest cosmic-ray experiment in the Northern Hemisphere. It
is located at 39.3◦ N, 112.9◦ W in Utah, USA. The observatory includes a surface detector array
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Figure 1: Examples of UHECR flux model maps Φ: for TS calculation. Proton attenuation length and
uniform smearing of the sources is assumed: \ (100 EeV) = 10◦; energies are �: = 57 EeV (left) and
�: = 100 EeV (right). Maps are shown in galactic coordinates for TA SD field of view.

(SD) and 38 fluorescence telescopes grouped into three stations. The SD consists of 507 stations
that contain plastic scintillators each of 3 m2 area (SD stations). The stations are placed in the
square grid with the 1.2 km spacing and covers the area of ∼ 700 km2. The TA SD is capable of
detecting EAS in the atmosphere caused by cosmic particles of EeV and higher energies. The TA
SD operates since May 2008.

We use the 11 years of TA SD data (from 11.05.2008 to 10.05.2019) in this study and employ
the TA SD set with cuts previously set for anisotropy studies [13]. Namely: (1) each event includes
at least 5 SD counters; (2) j2/d.o.f. doesn’t exceed 4 for both the geometry and the LDF fits; (3)
arrival direction is reconstructed with accuracy less than 5◦; (4) fractional uncertainty of (800 is less
than 25%; (5) largest signal counter is surrounded by 4 working counters that are not necessarily its
nearest neighbors; (6) reconstructed zenith angle of event is less than 55◦; (7) reconstructed energy
is greater than 10 EeV.

By construction our method is highly sensitive to outlier events (events that are far from any
LSS-source). Therefore to stay on a safe side we apply an additional cut that removes all the
events coinciding with lightnings in TA SD detector. We cut-off events temporarily matching with
NLDN lightnings [14]; this reduce the number of TA SD events only by ∼ 0.7% [15]. The final
data set contains 4769 events with � > 10 EeV, 127 events with � > 57 EeV and 15 events with
� > 100 EeV.

3. The analysis

The UHECR sources, regardless of their nature, are expected to trace the matter distribution.
In the limit when the density of sources is sufficiently high so that they can be treated statistically,
the expected UHECR flux can be calculated, as a function of energy, with essentially one free
parameter, the typical deflection angle \ which encodes uncertainties and unknowns of Galactic
and extragalactic magnetic fields and of chemical composition.

The mass distribution in the Universe was inferred from the 2MASS Galaxy Redshift Catalog
(XSCz) that is derived from the 2MASS Extended Source Catalog (XSC). We use the sample
corrected for catalog incompleteness and cut-off sources that are closer than 5 Mpc to us. We
have assumed that sources follow the matter distribution, and propagated UHECRs from sources
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Figure 2: Examples of UHECR flux model maps �: for mock UHECR sets simulation. Maps for protons
with b-dependent smearing of the sources and PT’11 regular GMF: � = 57 EeV (left) and � = 100 EeV
(right).

to the Earth taking full account of the energy attenuation processes under the assumption that the
primary particles are protons with �−2.5 injection spectrum. Accounting for the energy dependence
does not introduce additional parameters as the deflection angles are inversely proportional to event
energies and can be expressed in terms of a single parameter \100 — the deflection at a reference
energy �0 = 100 EeV. We bin the energies in log-uniform intervals with lower boundaries �: (ten
bins per energy decade with the highest bin an open interval � > 180 EeV) and neglect the energy
dependence within each bin. The arrival directions then are with the spherical Gaussian function
(Fisher distribution) with the opening angle \ = \ (�, \100) containing ∼ 63% of probability.

For a given smearing parameter \100 and given energy bin we construct the sky map of the
expected flux making use of the source distribution in space and the exposure of the experiment.
We normalize a flux map Φ: (\100, n) obtained this way to a unit integral over the sphere so that it
can be interpreted as a probability density to observe an event from the direction n. Two examples
of such maps are shown in Fig. 1. Finally, we define our test statistics )((\100) as follows:

)((\100) = −2
∑
:

(∑
8

ln
Φ: (\100, n8)
Φiso(n8)

)
, (1)

where the internal sum runs over the events observed in the energy bin : and the normalization
factor Φiso(n8) corresponds to the isotropic distribution of sources — a uniform flux modulated
by the exposure function. In the limit of a large number of events, this test statistics is distributed
around its minimum according to j2-distribution with one degree of freedom.

We now want to test its behavior for different compositions and magnetic field models, and
therefore we need to generate Monte-Carlo event sets that follow these models. To this end we
simulate another set of flux maps that is used to generate model event sets: we use the same sources
distribution but attenuate the flux according to SimProp [16] fits for each particular primary [17],
apply a latitude-dependent smearing due to random GMF and additionally process the flux through
the regular GMF. To avoid confusion, we denote these maps as �: . Two examples of these maps
are shown in Fig. 2. Both Φ: and �: maps are modulated by the exposure function of the TA
experiment, for which we take the geometrical exposure. The procedure described in more detail
in Ref. [10]. Finally, we use the maps �: to generate the test event sets which we need to study the
behavior of the test statistics Eq. (1). The mock event sets are generated by throwing random events
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lg(�/EeV) 5 UL
p , GMF PT’11 5 UL

p , GMF JF’12 5 UL
Fe , GMF PT’11 5 UL

Fe , GMF JF’12
1.00 - 1.25 0.44 0.41 0.89 0.91
1.25 - 1.50 0.66 0.64 0.64 0.70
1.50 - 1.75 0.81 0.83 0.36 0.35
1.75 - 2.00 0.93 0.94 0.11 0.12
> 2.00 0.00 0.00 1.00 1.00

Table 1: The 68% C.L. constraints on the fractions of protons and fraction of iron in ? − �4 mix derived
separately for two regular GMF models (see text for details).

with the TA SD spectrum [18] and accepting them with the probability given by the corresponding
flux map �: at the position of the event.

As it was shown in Ref. [10] the likelihood shape is robust to the presence of regular GMF
and non-extreme EGMF and even to reasonable magnetic field magnitude and model variation. It
opens a way for a new method of UHECR mass composition estimation. The position of the TS
minimum, \100,min, is a proxy of the primary particles deflection from their sources that is directly
related to the charge of these particles. Therefore, by measuring \100,min in the data one could
estimate the mean charge of UHCER in a given sample. This estimation can be made by comparing
the value of \100,min for the data with the distribution of \100,min in mock event sets of a particular
UHECR composition model. Since we only have one number \100,min determined from the data, the
exact composition is impossible to determine because the same value of \100,min may correspond
to different composition models. Nevertheless, the composition can be constrained by excluding
models where the measured value of \100,min never occurs or occurs rarely.

4. Results

In this study we limit ourselves with a simplified approach where the UHECR consist of a 2
component mixture with one light and one heavy component. We use this approach mostly due to
its simplicity and left the multicomponent analysis for the future work. Despite the simplification,
the results of this approach may still be of practical importance. For instance, for the proton-iron
mix the upper-bound on the proton fraction derived in this setup is conservative in the sense that it
will hold if iron is replaced by lighter species. The same applies to the upper-bound on the fraction
of iron. First, we constrain the constant proton fraction 5p and iron fraction 5Fe in separate energy
bins. We set the log-uniform bins of 0.25-decade width starting at � = 10 EeV. The 68% C.L.
constraints are shown in Table 1 and plotted in Fig. 3 together with TS shapes for data. We derive
these constraints separately for regular GMF models of Ref. [8] and Ref. [9]. As one can see the
results for different GMF models does not differ much.

Next, we use our approach to constrain the Auger composition model derived from spectrum
and -max fit [3]. We set the interval � > 57 EeV and interpret the Auger best-fit model as the
injection of pure silicon nuclei with cutoff, according to Ref. [17]. We employ the silicon attenuation
functions for mock set generation from the same Ref. [17] and refer to this scenario as Auger-like
model. The resulting \100,min distributions are shown in Fig. 4 together with the \100,data point for
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Figure 3: Top: Test statistic computed for TA SD data in separate energy bins. Bottom: constraints on
fraction of protons (left) and iron (right) in p-Fe mix at 68% C.L. derived from TS of data for regular GMF
models of PT’11 and JF’12.

the same energy interval. The TS for the TA data does not have minimum thus favoring very heavy
composition. We derive the p-value to have such \100,min value in the Auger-like model for two
models of regular GMF. These p-values are 0.0061 and 0.043 for the PT’11 and JF’12 GMFmodels
respectively. Note that we did not assume any energy rescaling between TA and Auger energy
scales in this test.

5. Conclusion

We proposed a quantitative method to assess composition of UHECR by using information on
their arrival directions and energies, under the assumption that sources follow the large-scale matter
distribution in the Universe. The key point of the proposal is calculation of the typical deflection
angle with respect to the LSS source model. This angle is defined as a minimum \100,min of the
likelihood function )((\100), Eq. (1). It should be calculated for the data and compared to the same
quantity calculated for the composition model in question. Our method has several advantages: it
is based exclusively on measured UHECR arrival directions and energies of events which are most
reliably determined from the reconstruction of air showers; it is not sensitive to the details of the
regular GMF and to the presence of the non-extreme EGMF; it can give conclusive results even
at highest energies where use of other methods of composition study is limited by low UHECR
statistics.
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Figure 4: The distribution of \100,min for Auger-like composition model for regular GMF models of PT’11
and JF’12 compared with the \100,data.

We applied the method to the 11 years of the TA SD data and derived the upper limits on the
fraction of protons and iron in p-Fe mix composition. The results in separate energy bins show
the monotonic decrease of the allowed iron fraction and increase of the allowed proton fraction
for energies from 10 EeV to 100 EeV, so that for 57 < � < 100 EeV the data allows only a small
heavy admixture. At � > 100 EeV the situation changes completely and the data favors a pure iron
composition 1 and disfavors any proton admixture. We left the interpretation of these interesting
results for the future works. It is also remarkable that the results are robust to the change of assumed
regular GMF model.

We also employed our method to test the compatibility of TA data with composition model
inferred by Auger. We used the Auger best-fit composition of Ref. [3] interpreted as the injected
pure silicon according to Ref. [17] and tested it with the TA data. At � > 57 EeV we found that
the model is in tension with the TA data at the level of 2.7f (2.0f) for PT’11 (JF’12) regular GMF
model. It is worth noting that this discrepancy is dominated by the TA "ultra-heavy" events at
� > 100 EeV for that the injected silicon is not heavy enough.
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